Search for exotic strange quark matter in high energy nuclear reactions.

The E864 collaboration Armstrong, T.A. ; Barish, K.N. ; Bennett, S.J. ; et al.
Nucl.Phys.A 625 (1997) 494-512, 1997.
Inspire Record 446705 DOI 10.17182/hepdata.36251

We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.

1 data table

ABOUT SIX BILLION 10% MOST CENTRAL INTERACTIONS.


Search for strange quark matter produced in relativistic heavy ion collisions

The E864 collaboration Armstrong, T.A. ; Barish, K.N. ; Batsouli, S. ; et al.
Phys.Rev.C 63 (2001) 054903, 2001.
Inspire Record 535783 DOI 10.17182/hepdata.31785

We present the final results from Experiment 864 of a search for charged and neutral strange quark matter produced in interactions of 11.5 GeV/c per nucleon Au beams with Pt or Pb targets. Searches were made for strange quark matter with A&gt;4. Approximately 30 billion 10% most central collisions were sampled and no strangelet states with A&lt;100 were observed. We find 90% confidence level upper limits of approximately 10^{-8} per central collision for both charged and neutral strangelets. These limits are for strangelets with proper lifetimes greater than 50 ns. Also limits for H^{0}-d and pineut production are given. The above limits are compared with the predictions of various models. The yields of light nuclei from coalescence are measured and a penalty factor for the addition of one nucleon to the coalescing nucleus is determined. This is useful in gauging the significance of our upper limits and also in planning future searches for strange quark matter.

9 data tables

No description provided.

No description provided.

No description provided.

More…