Experimental Investigation of the Energy Dependence of the Strong Coupling Strength

The JADE collaboration Bethke, S. ; Allison, John ; Ambrus, K. ; et al.
Phys.Lett.B 213 (1988) 235-241, 1988.
Inspire Record 263579 DOI 10.17182/hepdata.29894

The energy dependence of the relative production rate of three-jet events is studied in hadronic e + e − annihilation events at center of mass energies between 22 and 46.7 GeV. Three-jet events are defined by a jet finding algorithm which is closely related to the definition of resolvable jets used in O( α s 2 ) perturbative QCD calculations, where the relative production rate of three-jet events is roughly proportional to the size of the strong coupling strength. The production rates of three-jet events in the data decrease significantly with increasing centre of mass energy. The experimental rates, which are independent of fragmentation model calculations, can be directly compared to theoretically calculated jet production rates and are in good agreement with the QCD expectations of a running coupling strength. The hypothesis of an energy independent coupling constant can be excluded with a significance of four standard derivations.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of the Particle Flow in $q \bar{q} \gamma$ and $q \bar{q} g$ Events From $e^+ e^-$ Annihilations at {PETRA}

The JADE collaboration Saada, F.Ould ; Allison, J. ; Ambrus, K. ; et al.
Z.Phys.C 39 (1988) 1, 1988.
Inspire Record 260834 DOI 10.17182/hepdata.15623

The particle flow distributions in the event plane of 3-jet\((e^ +e^ -\to q\bar qg)\) and of radiative 2-jet\((e^ +e^ -\to q\bar q\gamma )\) events are compared at a centre of mass energy of 35 GeV. The number of particles in the angular region opposite to the gluon in\(q\bar qg\) events is found to be significantly reduced relative to the number of particles in the region opposite to the hard photon in\(q\bar q\gamma \) events. This depletion is expected from the “string effect” observed in 3-jet events. It can be explained within the framework of QCD as arising from soft gluon interference.

1 data table

Data requested from authors.


Differential Three Jet Cross-section in $e^+ e^-$ Annihilation and Comparison With Second Order Predictions of {QCD} and Abelian Vector Theory

The JADE collaboration Bartel, W. ; Cords, D. ; Dietrich, G. ; et al.
Phys.Lett.B 119 (1982) 239-244, 1982.
Inspire Record 180033 DOI 10.17182/hepdata.30830

Differential three-jet cross sections have been measured in e + e − -annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced the observed quark-gluon coupling strength by about 20% to α S = 0.16 ± 0.015 (stat.) ± 0.03 (syst.). The abelian vector theory is found to be incompatible with the data.

2 data tables

FIRST ORDER QCD.

SECOND ORDER QCD.


Observation of Four - Jet Structure in $e^+ e^-$ Annihilation at $\sqrt{s}=33$-{GeV}

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 115 (1982) 338-344, 1982.
Inspire Record 177210 DOI 10.17182/hepdata.30889

Topological distributions of hadrons from the reaction e + e − → hadrons are studied at center of mass energies of about 33 GeV. The experimental distributions in the parameters acoplanarity and tripodity, both sensitive to events with a four-jet structure, show significant deviations from the expectations for two- and three-jet events. They can be described well by the inclusion of four-jet events. The relative magnitude of the observed effect indicates second order QCD as its probable origin.

1 data table

No description provided.


Observation of Planar Three Jet Events in e+ e- Annihilation and Evidence for Gluon Bremsstrahlung

The JADE collaboration Bartel, W. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 91 (1980) 142-147, 1980.
Inspire Record 143985 DOI 10.17182/hepdata.6339

Topological distributions of charged and neutral hadrons from the reaction e + e − → multihadrons are studied at √ s of about 30 GeV. An excess of planar events is observed at a rate which cannot be explained by statistical fluctuations in the standard two-jet process. The planar events, mostly consisting of a slim jet on one side and a broader jet on the other, are shown actually to possess three-jet structure by demonstrating that the broader jet itself consists of two collinear jets in its own rest system. Detailed agreement between data and predictions is obtained if the process e + e − →q q ̄ g is taken into account. This strongly suggests gluon bremsstrahlung as the origin of the planar three-jet events. By comparison of the data with the qq̄g-model we obtain a value for the strong coupling constant of α S ( q 2 = 0.17 ± 0.04.

2 data tables

THRUST AND PLANARITY DISTRIBUTIONS. FINAL (BETTER) THRUST DISTRIBUTIONS WITH DETECTOR CORRECTIONS TO BE PUBLISHED LATER.

No description provided.