System size dependence of associated yields in hadron-triggered jets

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 683 (2010) 123-128, 2010.
Inspire Record 817691 DOI 10.17182/hepdata.102091

We present results on the system size dependence of high transverse momentum di-hadron correlations at $\sqrt{s_{NN}}$ = 200 GeV as measured by STAR at RHIC. Measurements in d+Au, Cu+Cu and Au+Au collisions reveal similar jet-like correlation yields at small angular separation ($\Delta\phi\sim0$, $\Delta\eta\sim0$) for all systems and centralities. Previous measurements have shown that the away-side yield is suppressed in heavy-ion collisions. We present measurements of the away-side suppression as a function of transverse momentum and centrality in Cu+Cu and Au+Au collisions. The suppression is found to be similar in Cu+Cu and Au+Au collisions at a similar number of participants. The results are compared to theoretical calculations based on the parton quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will provide important constraints on medium density profile and energy loss model parameters.

31 data tables

Di-hadron correlations in $\Delta\phi$ for small $|\Delta\eta|$ ($|\Delta\eta|<0.7$) and large ($0.7<|\Delta\eta|<1.7$), scaled to match small $|\Delta\eta|$ at large $\Delta\phi$.

Subtracted distributions for di-hadron correlations in $\Delta\phi$ for small $|\Delta\eta|$ ($|\Delta\eta|<0.7$) minus large ($0.7<|\Delta\eta|<1.7$), scaled to match small $|\Delta\eta|$ at large $\Delta\phi$.

Subtracted distributions for di-hadron correlations in $\Delta\eta$.

More…

Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

12 data tables

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in peripheral (60-80%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 7 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

More…

Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 82 (2010) 034909, 2010.
Inspire Record 839470 DOI 10.17182/hepdata.101353

Charged-particle spectra associated with direct photon ($\gamma_{dir} $) and $\pi^0$ are measured in $p$+$p$ and Au+Au collisions at center-of-mass energy $\sqrt{s_{_{NN}}}=200$ GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between $\gamma_{dir}$ and $\pi^0$. Assuming no associated charged particles in the $\gamma_{dir}$ direction (near side) and small contribution from fragmentation photons ($\gamma_{frag}$), the associated charged-particle yields opposite to $\gamma_{dir}$ (away side) are extracted. At mid-rapidity ($|\eta|<0.9$) in central Au+Au collisions, charged-particle yields associated with $\gamma_{dir}$ and $\pi^0$ at high transverse momentum ($8< p_{T}^{trig}<16$ GeV/$c$) are suppressed by a factor of 3-5 compared with $p$ + $p$ collisions. The observed suppression of the associated charged particles, in the kinematic range $|\eta|<1$ and $3< p_{T}^{assoc} < 16$ GeV/$c$, is similar for $\gamma_{dir}$ and $\pi^0$, and independent of the $\gamma_{dir}$ energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.

4 data tables

The $z_{T}$ dependence of $\pi^{0}-h^{\pm}$ near side and away-side associated particle yields. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

The $z_{T}$ dependence of away-side associated-particle yields for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

The $z_{T}$ dependence $I_{AA}$ for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

More…

Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

10 data tables

Data simulation comparison (with arbitrary normalization). Di-jet invariant mass.

Data simulation comparison (with arbitrary normalization). Difference between jet pseudorapidities.

Data simulation comparison (with arbitrary normalization). Difference between jet azimuthal angles.

More…

Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 092002, 2015.
Inspire Record 1297229 DOI 10.17182/hepdata.73432

We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

7 data tables

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.

More…

Measurement of D* Mesons in Jets from p+p Collisions at sqrt{s} = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 79 (2009) 112006, 2009.
Inspire Record 810426 DOI 10.17182/hepdata.45861

We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.

2 data tables

D*+-/jet azimuthal correlations. Delta Phi represents the difference in azimuthal angle between D*+- (of 2<Pt<10 GeV/c) and the jet's (of 8<Pt<20 GeV/c) axis.

Production rate of D*+- mesons with fractional longitudinal momenta 0.2<z<0.5 (z = Pl(D*+-)/Ejet, Pl is the momentum projection on the jet axis and Ejet is the total jet energy) in inclusive jets of 11.5 Gev mean transverse energy.