A Search for substructure of leptons and quarks with the CELLO detector

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Field, J.H. ; et al.
Z.Phys.C 51 (1991) 149-156, 1991.
Inspire Record 301727 DOI 10.17182/hepdata.14981

Differential cross section data of the CELLO experiment on pair production of muons, taus, and heavy quarks ine+e−-annihilation are presented and analysed, together with our data on Bhabha scattering, in terms of compositeness effects characterized by the mass scale Λ. We discuss difficulties in the combination of limits Λ from different experiments. The appropriate parameter to combine different results turns out to be ɛ=±1/Λ2, which is in contrast to Λ Gaussian distributed.

10 data tables

Errors are combined statistics and systematics.

Errors are combined statistics and systematics.

Errors are combined statistics and systematics.

More…

AN ANALYSIS OF MULTI - HADRONIC EVENTS PRODUCED WITH TWO ENERGETIC LEPTONS IN e+ e- ANNIHILATION

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Dainton, J.B. ; et al.
Phys.Lett.B 212 (1988) 515-522, 1988.
Inspire Record 262955 DOI 10.17182/hepdata.29907

A search for multihadronic events produced with two energetic leptons has been performed at PETRA using 130 pb −1 accumulated by the CELLO detector at 35 GeV ⩽ √ s ⩽46.8 GeV. Three μ + μ − , eleven e + e − and three eμ events were observed. The mesured yields an dthe event characteristics are in good agreement with the expectation for the α 4 QED processes e + e − → ℓ + ℓ − q q and from semileptonic decays of pairs of heavy quarks.

1 data table

No description provided.


A Measurement of the Muon Pair Production in $e^+ e^-$ Annihilation at 38.3-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 191 (1987) 209-216, 1987.
Inspire Record 244835 DOI 10.17182/hepdata.30180

The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.

3 data tables

Mu-pair cross sections.

Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.

Forward-backward asymmetry.


Limits on Spin 0 Bosons in $e^+ e^-$ Annihilation Up to 45.2-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 140 (1984) 130-136, 1984.
Inspire Record 199851 DOI 10.17182/hepdata.30547

We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.

2 data tables

No description provided.

Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.


Coupling Strengths of Weak Neutral Currents From Leptonic Final States at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 16 (1983) 301, 1983.
Inspire Record 180756 DOI 10.17182/hepdata.16385

Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).

2 data tables

No description provided.

Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.


Measurement of the Reaction $e^+ e^- \to \mu^+ \mu^-$ for 14-{GeV} $\le \sqrt{s} \le$ 36.4-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Field, J.H. ; et al.
Z.Phys.C 14 (1982) 283, 1982.
Inspire Record 177216 DOI 10.17182/hepdata.16414

The reaction (e+e−→μ+μ−) has been measured between\(\sqrt S= 14.0\) and\(\sqrt S= 36.4\). The total cross section result is in good agreement with the QED prediction and the following Λ values have been obtained:Λ+=186 GeV,Λ−=101 GeV. The angular distribution at high energy (\(\left( {\left. {\left\langle {\sqrt S } \right.} \right\rangle= 34.2 GeV} \right)\)) shows a fitted charge asymmetry of −0.064±0.064 in agreement with theW-S model prediction of −0.092, corresponding to an axial coupling parametera2=4ga2=0.69±0.69.

3 data tables

No description provided.

No description provided.

Errors include contribution from systematics. Result based on fit(1 + cos(theta)**2 + q cos(theta)) to corrected angular distribution.