Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2

The Jefferson Lab F(pi)-2 collaboration Horn, T. ; Aniol, K. ; Arrington, J. ; et al.
Phys.Rev.Lett. 97 (2006) 192001, 2006.
Inspire Record 721062 DOI 10.17182/hepdata.31560

The H(e,e'pi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F_pi) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F_pi is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.

3 data tables

Separated cross sections at mean Q**2 of 1.60 GeV**2.

Separated cross sections at mean Q**2 of 2.45 GeV**2.

Extracted values of the charged pion form-factor. Errors are the statistical and experimental systematics combined in quadrature.


Measurements of the proton elastic form-factors for 1-GeV/c**2 <= Q**2 <= 3-GeV/C**2 at SLAC

Walker, R.C. ; Filippone, B. ; Jourdan, J. ; et al.
Phys.Rev.D 49 (1994) 5671-5689, 1994.
Inspire Record 360764 DOI 10.17182/hepdata.22469

We report measurements of the proton form factors GEp and GMp extracted from elastic scattering in the range 1≤Q2≤3 (GeV/c)2 with total uncertainties < 15% in GEp and < 3% in GMp. Comparisons are made to theoretical models, including those based on perturbative QCD, vector-meson dominance, QCD sum rules, and diquark constituents in the proton. The results for GEp are somewhat larger than indicated by most theoretical parametrizations, and the ratios of the Pauli and Dirac form factors Q2(F2pF1p) are lower in value and demonstrate a weaker Q2 dependence than those predictions. A global extraction of the elastic form factors from several experiments in the range 0.1 0.1<Q2<10 (GeV/c)2 is also presented.

6 data tables

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

Point-to-point systematic uncertainty is 0.5%, overall normailzation uncertainty is 1.9%.

More…

DETERMINATION OF NUCLEON FORM-FACTOR ON THE BASIS OF DATA FROM pi+ Li-7 ---> e+ e- X REACTION AT 380-MeV KINETIC PION ENERGY

Baturin, V.N. ; Blokhintseva, T.D. ; Kravtsov, A.V. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 452, 1988.
Inspire Record 246879 DOI 10.17182/hepdata.38971

None

1 data table

No description provided.


Measurement of the $\pi^-$ Form-factor

Dally, E.B. ; Drickey, Darrell James ; Hauptman, J.M. ; et al.
Phys.Rev.D 24 (1981) 1718-1735, 1981.
Inspire Record 172687 DOI 10.17182/hepdata.26467

An experiment to measure the electromagnetic form factor of the negative π meson has been carried out at Fermilab by elastically scattering 100-GeV/c pions from the atomic electrons in a liquid-hydrogen target. We find that the elastic differential scattering cross section is characterized by a root-mean-square pion charge radius of 0.56±0.04 fm. This paper described our experimental design, measurement resolutions, event triggering logic, event reconstruction, experimental corrections, and form-factor results.

3 data tables

No description provided.

Axis error includes +- 0.54/0.54 contribution (EVENT-FINDING CORRECTIONS).

No description provided.


Elastic Scattering Measurement of the Negative Pion Radius

Dally, E.B. ; Hauptman, J.M. ; Kubic, J. ; et al.
Phys.Rev.Lett. 48 (1982) 375-378, 1982.
Inspire Record 177923 DOI 10.17182/hepdata.20609

A new measurement of the elastic scattering of 250-GeV/c negative pions by electrons provides form-factor results from 0.0368<q2<0.0940 (GeV/c)2. These measurements determine the mean square pion radius to be 〈rπ2〉=0.439±0.030 fm2 or 〈rπ2〉12=0.663±0.023 fm. Comparisons are made with previous elastic-scattering experiments as well as with results obtained from electroproduction experiments, e+e− annihilation experiments, and phenomenological analyses.

1 data table

No description provided.


OBSERVATION OF INVERSE ELECTROPRODUCTION OF PIONS ON C-12 NUCLEUS AT 164-MeV PION ENERGY AND DETERMINATION OF F1(v) NUCLEON FORM-FACTOR

Alekseev, G.D. ; Blokhintseva, T.D. ; Karpukhin, V.V. ; et al.
Sov.J.Nucl.Phys. 46 (1987) 801, 1987.
Inspire Record 247868 DOI 10.17182/hepdata.38865

None

3 data tables

No description provided.

No description provided.

No description provided.


Magnetic Form Factor of the Deuteron

Auffret, S. ; Cavedon, J.M. ; Clemens, J.C. ; et al.
Phys.Rev.Lett. 54 (1985) 649-652, 1985.
Inspire Record 214266 DOI 10.17182/hepdata.20337

We have measured the deuteron magnetic form factor B(q2) for values of the momentum transfer squared between 7 and 28 fm−2. The data are compared with relativistic and nonrelativistic predictions including meson-exchange-current contributions. Significant disagreement is found for large momentum transfers.

2 data tables

No description provided.

No description provided.


Measurement of Elastic electron - Neutron Cross-Sections Up to Q**2 = 10-(GeV/c)**2

Rock, Stephen ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.Lett. 49 (1982) 1139, 1982.
Inspire Record 179135 DOI 10.17182/hepdata.20575

The elastic electron-neutron cross section has been measured at four-momentum transfers squared (Q2) of 2.5, 4.0, 6.0, 8.0, and 10.0 (GeV/c)2 with use of a deuterium target and detection of the scattered electrons at 10°. The ratio of neutron to proton elastic cross sections decreases with Q2. At high Q2 this trend is inconsistent with the dipole law, form-factor scaling, and many vector dominance models, although it is consistent with some parton models.

2 data tables

No description provided.

No description provided.


Pion and kaon pair production in photon-photon collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 404, 1986.
Inspire Record 228072 DOI 10.17182/hepdata.20204

We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.

5 data tables

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph.. Additional overall systematic error 20% not included.

Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.

More…

>A Measurement of $e^+ e^- \to \bar{p} p$ for 1975-{MeV} $\le \sqrt{s} \le$ 2250-{MeV}

Bisello, D. ; Limentani, S. ; Nigro, M. ; et al.
Nucl.Phys.B 224 (1983) 379, 1983.
Inspire Record 190558 DOI 10.17182/hepdata.33935

The e + e − → p p cross section has been measured in the energy interval (1975 ⩽ 2 E ⩽ 2250) MeV for |cos θ | < 0.7. The measurement is based on ∼ 100 events, thus improving by a factor 3 on the previous existing statistics in this energy interval. The form factor | G | 2 is given as a function of energy under the assumption | G E | = | G M |. We also give the first measurement of the differential cross section, averaged over the energy interval, and estimate the ratio G M |/| G E | from it.

3 data tables

No description provided.

No description provided.

No description provided.