Version 2
Search for Higgs boson pair production in association with a vector boson in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 519, 2023.
Inspire Record 2164067 DOI 10.17182/hepdata.131626

This paper reports a search for Higgs boson pair ($hh$) production in association with a vector boson ($W$ or $Z$) using 139 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($W\to\ell\nu, Z\to\ell\ell,\nu\nu$ with $\ell=e, \mu$) and the Higgs bosons each decay into a pair of $b$-quarks. It targets $Vhh$ signals from both non-resonant $hh$ production, present in the Standard Model (SM), and resonant $hh$ production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant $Vhh$ production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance $H$, in the mass range 260-1000 GeV, that decays into $hh$, and the other is the production of a heavier neutral pseudoscalar resonance $A$ that decays into a $Z$ boson and $H$ boson, where the $A$ boson mass is 360-800 GeV and the $H$ boson mass is 260-400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.

58 data tables

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a W boson decaying to a charged lepton and a neutrino.

More…

Version 3
Search for resonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092002, 2022.
Inspire Record 2032611 DOI 10.17182/hepdata.111124

A search for resonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126-139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis is divided into two channels, targeting Higgs boson decays which are reconstructed as pairs of small-radius jets or as individual large-radius jets. Spin-0 and spin-2 benchmark signal models are considered, both of which correspond to resonant $HH$ production via gluon$-$gluon fusion. The data are consistent with Standard Model predictions. Upper limits are set on the production cross-section times branching ratio to Higgs boson pairs of a new resonance in the mass range from 251 GeV to 5 TeV.

20 data tables

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-0 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-2 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Corrected $m(HH)$ distribution in the resolved $4b$ validation region (dots), compared with the reweighted distribution in $2b$ validation region (teal histogram). The error bars on the $4b$ points represent the Poisson uncertainties corresponding to their event yields. The final bin includes overflow. The background uncertainty (gray band) is computed by adding all individual components in quadrature. The bottom panel shows the difference between the $4b$ and reweighted $2b$ distributions, relative to the $2b$ distribution.

More…

Version 3
Search for high-mass dilepton resonances using 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 796 (2019) 68-87, 2019.
Inspire Record 1725190 DOI 10.17182/hepdata.88425

A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=$13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb$^{-1}$. A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E6-motivated $Z^\prime_\psi$ boson. Also presented are limits on Heavy Vector Triplet model couplings.

72 data tables

Distribution of the dielectron invariant mass for events passing the full selection.

Distribution of the dielectron invariant mass for events passing the full selection.

Distribution of the dielectron invariant mass for events passing the full selection.

More…

Version 2
Search for resonant $WZ$ production in the fully leptonic final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 787 (2018) 68-88, 2018.
Inspire Record 1676472 DOI 10.17182/hepdata.82546

A search for a heavy resonance decaying into $WZ$ in the fully leptonic channel (electrons and muons) is performed. It is based on proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. No significant excess is observed over the Standard Model predictions and limits are set on the production cross section times branching ratio of a heavy vector particle produced either in quark-antiquark fusion or through vector-boson fusion. Constraints are also obtained on the mass and couplings of a singly charged Higgs boson, in the Georgi-Machacek model, produced through vector-boson fusion.

18 data tables

The signal selection acceptance times efficiency (A$\times\epsilon$), defined as the ratio of the number of MC signal events in the category to the number of generated signal events, is presented as a function of the Georgi-Machacek Model $H_5^\pm$ resonance mass in the VBF category. The A$\times\epsilon$ is shown for the combination of all decay channels. For the Georgi-Machacek Model $H_5^\pm$ samples, generator cuts are: $p_{\mathrm T}$ (jets) $>$ 15 GeV, $p_{\mathrm T}$ (leptons) $>$ 10 GeV, $|\eta|$(jets) $<$ 5 and $|\eta|$(leptons) $<$ 2.7. The decay of $W$ is to all flavors of leptons and of $Z$ to $e^+e^−$ and $\mu^+\mu^-$. The $Z$ to $\tau^+\tau-$ decays give a negligible contribution and were not included in the simulation, however the acceptancs shown here was scaled to include all decays. A systematic uncertainty was applied to cover the scaling uncertainty. The uncertainty shown represents the total statistical and systematic uncertainties.

The signal selection acceptance times efficiency (A$\times\epsilon$), defined as the ratio of the number of MC signal events in the category to the number of generated signal events, is presented as a function of the Georgi-Machacek Model $H_5^\pm$ resonance mass in the VBF category. The A$\times\epsilon$ is shown for the combination of all decay channels. For the Georgi-Machacek Model $H_5^\pm$ samples, generator cuts are: $p_{\mathrm T}$ (jets) $>$ 15 GeV, $p_{\mathrm T}$ (leptons) $>$ 10 GeV, $|\eta|$(jets) $<$ 5 and $|\eta|$(leptons) $<$ 2.7. The decay of $W$ is to all flavors of leptons and of $Z$ to $e^+e^−$ and $\mu^+\mu^-$. The $Z$ to $\tau^+\tau-$ decays give a negligible contribution and were not included in the simulation, however the acceptancs shown here was scaled to include all decays. A systematic uncertainty was applied to cover the scaling uncertainty. The uncertainty shown represents the total statistical and systematic uncertainties.

The signal selection acceptance times efficiency (A$\times \epsilon$), defined as the ratio of the number of MC signal events in the category to the number of generated signal events, is presented as a function of the HVT resonance mass in the VBF category. The A$\times \epsilon$ is shown for the combination of all decay channels. For the HVT VBF samples, generator cuts are: m$_{jj} >$ 150 GeV. The decay of $W$ and $Z$ are to all flavors of leptons. The uncertainty shown represents the total statistical and systematic uncertainties.

More…