$J/\psi$ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 072301, 2012.
Inspire Record 1088222 DOI 10.17182/hepdata.60297

The ALICE experiment has measured the inclusive J/$\psi$ production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}} } = 2.76$ TeV down to zero transverse momentum in the rapidity range $2.5 < y < 4$. A suppression of the inclusive J/$\psi$ yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0-80% most central collisions, is $0.545 \pm 0.032 \rm{(stat.)} \pm 0.083 \rm{(syst.)}$ and does not exhibit a significant dependence on the collision centrality. These features appear significantly different from measurements at lower collision energies. Models including J/$\psi$ production from charm quarks in a deconfined partonic phase can describe our data.

2 data tables

Jpsi Nuclear Modification Factor (Raa) measured in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and pt > 0 GeV/c, as a function of - the average number of participating nucleons (<Npart>), - the average number of participating nucleons (<Npart,w>) weigthed by the average number of binary collisions, - the mid-rapidity charged-particle density measured at pseudo-rapidity eta = 0 dNch,w/deta|eta=0 weigthed by the average number of binary collisions.

Centrality integrated (0%-80%) inclusive Jpsi Nuclear Modification Factor (Raa) measured in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV as a function of rapidity for two transverse momentum ranges.


$\Lambda\rm{K}$ femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 103 (2021) 055201, 2021.
Inspire Record 1797451 DOI 10.17182/hepdata.104979

The first measurements of the scattering parameters of $\Lambda$K pairs in all three charge combinations ($\Lambda$K$^{+}$, $\Lambda$K$^{-}$, and $\Lambda\mathrm{K^{0}_{S}}$) are presented. The results are achieved through a femtoscopic analysis of $\Lambda$K correlations in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV recorded by ALICE at the LHC. The femtoscopic correlations result from strong final-state interactions, and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the non-femtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the $\Lambda\rm{K}^{+}$ interaction and attractive in the $\Lambda\rm{K}^{-}$ interaction. The data hint that the and $\Lambda\rm{K}^{0}_{S}$ interaction is attractive, however the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs ($\rm s\overline{s}$ in $\Lambda$K$^{+}$ and $\rm u\overline{u}$ in $\Lambda$K$^{-}$) or from different net strangeness for each system (S = 0 for $\Lambda$K$^{+}$, and S = $-2$ for $\Lambda$K$^{-}$). Finally, the $\Lambda$K systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle $\Lambda$ and K source distributions.

71 data tables

Invariant mass distributions in the 0--10\% centrality interval of (a) p$\uppi^{-}$ pairs showing the $\Lambda$ peak for V$^{0}$ candidates.

Invariant mass distributions in the 0--10\% centrality interval of $\uppi^{+}\uppi^{-}$ pairs showing the $\mathrm{K^{0}_{S}}$ peak for V$^{0}$ candidates.

Measured correlation function for the $\Lambda\mathrm{K^{+}}\oplus\overline{\Lambda}\mathrm{K^{-}}$ system in the 0--10\% centrality interval.

More…

$\Lambda_\mathrm{c}^+$ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 793 (2019) 212-223, 2019.
Inspire Record 1696315 DOI 10.17182/hepdata.89397

A measurement of the production of prompt $\Lambda_{\rm c}^{+}$ baryons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 $ TeV with the ALICE detector at the LHC is reported. The $\Lambda_{\rm c}^{+}$ and $\overline{\Lambda}_{\rm c}^{-}$ were reconstructed at midrapidity ($|y| < 0.5$) via the hadronic decay channel $\Lambda_{\rm c}^{+}\rightarrow {\rm p} {\rm K}_{\rm S}^{0}$ (and charge conjugate) in the transverse momentum and centrality intervals $6 < p_{\rm T} <12$ GeV/$c$ and 0-80%. The $\Lambda_{\rm c}^{+}$/D$^0$ ratio, which is sensitive to the charm quark hadronisation mechanisms in the medium, is measured and found to be larger than the ratio measured in minimum-bias pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 $ TeV. In particular, the values in p-Pb and Pb-Pb collisions differ by about two standard deviations of the combined statistical and systematic uncertainties in the common $p_{\rm T}$ interval covered by the measurements in the two collision system. The $\Lambda_{\rm c}^{+}$/D$^0$ ratio is also compared with model calculations including different implementations of charm quark hadronisation. The measured ratio is reproduced by models implementing a pure coalescence scenario, while adding a fragmentation contribution leads to an underestimation. The $\Lambda_{\rm c}^{+}$ nuclear modification factor, $R_{\rm AA}$, is also presented. The measured values of the $R_{\rm AA}$ of $\Lambda_{\rm c}^{+}$, D$_{\rm s}$ and non-strange D mesons are compatible within the combined statistical and systematic uncertainties. They show, however, a hint of a hierarchy $(R_{\rm AA}^{{\rm D}^{0}}<R_{\rm AA}^{{\rm D}_{\rm s}}<R_{\rm AA}^{\Lambda_{\rm c}^{+}})$, conceivable with a contribution of recombination mechanisms to charm hadron formation in the medium.

2 data tables

$\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio in 0-80% most central Pb-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the transverse momentum interval 6 < $p_{\rm {T}}$ < 12 GeV/${\it {c}}$

The nuclear modification factor $R_\mathrm{AA}$ of prompt $\Lambda_{\rm {c}}^{+}$ baryons in 0-80% most central Pb-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the transverse momentum interval 6 < $p_{\rm {T}}$ < 12 GeV/${\it {c}}$


$\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 04 (2018) 108, 2018.
Inspire Record 1645239 DOI 10.17182/hepdata.81727

The $p_{\rm T}$-differential production cross section of prompt $\Lambda_{\rm c}^+$ charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity. The $\Lambda_{\rm c}^+$ and ${\overline{\Lambda}}_{\rm c}^-$ were reconstructed in the hadronic decay modes $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K^-}\pi^+$, $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K_{\rm S}^0}$ and in the semileptonic channel $\Lambda_{\rm c}^+\rightarrow {\rm e^+}\nu_{\rm e}\Lambda$ (and charge conjugates). The measured values of the $\Lambda_{\rm c}^+/{\rm D_0}$ ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and $p_{\rm T}$ intervals, where the $\Lambda_{\rm c}^+$ production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the $\Lambda_{\rm c}^+$ nuclear modification factor, $R_{\rm pPb}$, is also presented. The $R_{\rm pPb}$ is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.

7 data tables

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$.

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.

The $\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio measured in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$ as a function of $p_{\rm {T}}$.

More…

$\Sigma(1385)^{\pm}$ resonance production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 351, 2023.
Inspire Record 2088201 DOI 10.17182/hepdata.134042

Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/$c$, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the $\Sigma(1385)^{\pm}$ particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/$c$. The first measurement of the $\Sigma(1385)^{\pm}$ resonance production at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}= 5.02$ TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, $\Lambda\pi$, as a function of the transverse momentum ($p_{\rm T}$) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For $\Sigma(1385)^{\pm}$, a similar behaviour as ${\rm K}^{*} (892)^{0}$ is observed in data unlike the predictions of EPOS3 with afterburner.

11 data tables

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (0-10% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (30-50% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (50-90% multiplicity class).

More…

$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

14 data tables

Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

More…

$\Upsilon$ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 790 (2019) 89-101, 2019.
Inspire Record 1672798 DOI 10.17182/hepdata.88408

Inclusive $\Upsilon$(1S) and $\Upsilon$(2S) production have been measured in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{_{\rm NN}}}=5.02$ TeV, using the ALICE detector at the CERN LHC. The $\Upsilon$ mesons are reconstructed in the centre-of-mass rapidity interval $2.5<y<4$ and in the transverse-momentum range $p_{\rm T}<15$ GeV/$c$, via their decays to muon pairs. In this Letter, we present results on the inclusive $\Upsilon$(1S) nuclear modification factor $R_{\rm AA}$ as a function of collision centrality, transverse momentum and rapidity. The $\Upsilon$(1S) and $\Upsilon$(2S) $R_{\rm AA}$, integrated over the centrality range 0-90%, are $0.37 \pm 0.02 {\rm{(stat)}}\pm 0.03 {\rm{(syst)}}$ and $0.10 \pm 0.04 {\rm{(stat)}}\pm 0.02 {\rm{(syst)}}$, respectively, leading to a ratio $R_{\rm{AA}}^{\Upsilon(\rm2S)}/R_{\rm{AA}}^{\Upsilon(\rm1S)}$ of $0.28\pm0.12\text{(stat)}\pm0.06\text{(syst)}$. The observed $\Upsilon$(1S) suppression increases with the centrality of the collision and no significant variation is observed as a function of transverse momentum and rapidity.

6 data tables

Inclusive $\Upsilon$(1S) $R_{\rm AA}$ and Pb-Pb yields for the centrality, transverse-momentum and rapidity ranges 0-90%, $0<p_{\rm T}<15$ GeV/$c$ and $2.5<y<4$, respectively. Statistical and systematic uncertainties are reported. (The yield is not normalized to the kinematic intervals).

Inclusive $\Upsilon$(1S) $R_{\rm AA}$ and Pb-Pb yields as a function of collision centrality. The transverse-momentum and rapidity ranges are $0<p_{\rm T}<15$ GeV/$c$ and $2.5<y<4$, respectively. Statistical and systematic uncertainties are reported. A global systematic uncertainty of 7.7% (4.9%) affects all the $R_{\rm AA}$ (yield) values. (The yields are not normalized to the kinematic intervals).

Inclusive $\Upsilon$(1S) $R_{\rm AA}$ and Pb-Pb yields as a function of transverse momentum. The centrality and rapidity ranges are 0-90% and $2.5<y<4$, respectively. Statistical and systematic uncertainties are reported. A global systematic uncertainty of 2.7% (2.3%) affects all the $R_{\rm AA}$ (yield) values.

More…

$\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2021-200, 2021.
Inspire Record 1946970 DOI 10.17182/hepdata.136309

The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonances has been measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval $-$0.5 $<$$y$$<$ 0 and the transverse momentum spectra are measured for various multiplicity classes up to $p_{\rm T}$ = 20 GeV/$c$ for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $p_{\rm T}$ = 16 GeV/$c$ for $\mathrm{\phi(1020)}$. The $p_{\rm T}$ -integrated yields and mean transverse momenta are reported and compared with previous results in pp, p-Pb and Pb-Pb collisions. The $x_{\mathrm{T}}$ scaling for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonance production is newly tested in p-Pb collisions and found to hold in the high-$p_{\rm T}$ region at LHC energies. The nuclear modification factors ($R_{\rm pPb}$) as a function of $p_{\rm T}$ for $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ at $\sqrt{s_{NN}}$ = 8.16 TeV are presented along with the new $R_{\rm pPb}$ measurements of $\mathrm{K}^{*0}$, $\mathrm{\phi}$ , $\Xi$, and $\Omega$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. At intermediate $p_{\rm T}$ (2-8 GeV/$c$), $R_{\rm pPb}$ of $\Xi$, $\Omega$ show a Cronin-like enhancement, while $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ show no or little nuclear modification. At high $p_{\rm T}$ ($>$ 8 GeV/$c$), the $R_{\rm pPb}$ values of all hadrons are consistent with unity within uncertainties. The $R_{\rm pPb}$ of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ at $\sqrt{s_{\rm NN}}$ = 8.16 and 5.02 TeV show no significant energy dependence.

22 data tables

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (NSD).

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (Multiplicity class 0-5%).

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (Multiplicity class 5-10%).

More…

$\phi$ meson production at forward rapidity in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=2.76$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 559, 2018.
Inspire Record 1669805 DOI 10.17182/hepdata.83778

$\phi$ meson measurements provide insight into strangeness production, which is one of the key observables for the hot medium formed in high-energy heavy-ion collisions. ALICE measured $\phi$ production through its decay in muon pairs in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 2.76 TeV in the intermediate transverse momentum range $2 < p_{\rm T} < 5$ GeV/$c$ and in the rapidity interval $2.5<y<4$. The $\phi$ yield was measured as a function of the transverse momentum and collision centrality. The nuclear modification factor was obtained as a function of the average number of participating nucleons. Results were compared with the ones obtained via the kaon decay channel in the same $p_{\rm T}$ range at midrapidity. The values of the nuclear modification factor in the two rapidity regions are in agreement within uncertainties.

5 data tables

phi yield as a function of $p_\mathrm{T}$ at forward rapidity in pp collisions.

phi yield as a function of $p_\mathrm{T}$ at forward rapidity in Pb-Pb collisions for 0-40\% centrality.

phi yield as a function of $p_\mathrm{T}$ at forward rapidity in Pb-Pb collisions for 40-90\% centrality (scaled by 3 in the figure).

More…

$\phi$-meson production at forward rapidity in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV and in pp collisions at $\sqrt{s}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 768 (2017) 203-217, 2016.
Inspire Record 1380453 DOI 10.17182/hepdata.77057

The first study of $\phi$-meson production in p-Pb collisions at forward and backward rapidity, at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$~TeV, has been performed with the ALICE apparatus at the LHC. The $\phi$-mesons have been identified in the dimuon decay channel in the transverse momentum ($p_{\rm T}$) range $1 < p_{\rm T} < 7$ GeV/$c$, both in the p-going ($2.03 < y < 3.53$) and the Pb-going ($-4.46 < y < -2.96$) directions, where $y$ stands for the rapidity in the nucleon-nucleon centre-of-mass, the integrated luminosity amounting to $5.01 \pm 0.19$~nb$^{-1}$ and $5.81 \pm 0.20$~nb$^{-1}$, respectively, for the two data samples. Differential cross sections as a function of transverse momentum and rapidity are presented. The forward-backward ratio for $\phi$-meson production is measured for $2.96<|y|<3.53$, resulting in a ratio $\sim 0.5$ with no significant $p_{\rm T}$ dependence within the uncertainties. The $p_{\rm T}$ dependence of the $\phi$ nuclear modification factor $R_{\rm pPb}$ exhibits an enhancement up to a factor 1.6 at $p_{\rm T}$ = 3-4 GeV/$c$ in the Pb-going direction. The $p_{\rm T}$ dependence of the $\phi$-meson cross section in pp collisions at $\sqrt{s}$ = 2.76 TeV, which is used to determine a reference for the p-Pb results, is also presented here for $1 < p_{\rm T} < 5$ GeV/$c$ and $2.5 <y < 4$ for a $78 \pm 3$~nb$^{-1}$ integrated luminosity sample.

4 data tables

$p_{\rm T}$-differential production cross section of $\phi$ in pp at $\sqrt{s_{\rm NN}}$=2.76 TeV, in the rapidity range 2.5 < y < 4

$p_{\rm T}$-differential production cross section of $\phi$ in p-Pb at $\sqrt{s_{\rm NN}}$=5.02 TeV, in the rapidity range 4.46 < y < 2.96

$p_{\rm T}$-differential production cross section of $\phi$ in p-Pb at $\sqrt{s_{\rm NN}}$=5.02 TeV, in the rapidity range 2.03 < y < 3.53

More…

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

16 data tables

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center of mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\eta$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

More…

$\psi(2S)$ suppression in Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 132 (2024) 042301, 2024.
Inspire Record 2165947 DOI 10.17182/hepdata.145654

The production of the $\psi(2S)$ charmonium state was measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity ($2.5<y<4$). The measurement of the ratio of the inclusive production cross sections of the $\psi(2S)$ and J/$\psi$ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region $p_{\rm T}<12$ GeV/$c$. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio $[\sigma^{\psi(2S)}/\sigma^{J/\psi}]_{\rm{Pb-Pb}}/[\sigma^{\psi(2S)}/\sigma^{J/\psi}]_{\rm{pp}}$. It is found that in Pb-Pb collisions the $\psi(2S)$ is suppressed by a factor of $\sim 2$ with respect to the J/$\psi$. The $\psi(2S)$ nuclear modification factor $R_{\rm AA}$ was also obtained as a function of both centrality and $p_{\rm T}$. The results show that the $\psi(2S)$ resonance yield is strongly suppressed in Pb-Pb collisions, by a factor up to $\sim 3$ with respect to pp. Comparisons of cross section ratios with previous SPS findings by the NA50 experiment and of $R_{\rm AA}$ with higher-$p_{\rm T}$ results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC.

6 data tables

Ratio of the $\psi$(2S) over J/$\psi$ cross sections, not corrected for the branching ratio, shown as a function of centrality

Double ratio of the $\psi$(2S) over J/$\psi$ cross sections in Pb--Pb and pp collisions shown as a function of centrality

Nuclear modification factor of the $\psi$(2S) shown as a function of centrality

More…

$\rm \Lambda_{c}^{+}$ production and baryon-to-meson ratios in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 202301, 2021.
Inspire Record 1829739 DOI 10.17182/hepdata.114213

The prompt production of the charm baryon $\rm \Lambda_{c}^{+}$ and the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$TeV. These new measurements show a clear decrease of the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ ratio with increasing transverse momentum ($p_{\rm T}$) in both collision systems in the range $2<p_{\rm T}<12$ GeV/$c$, exhibiting similarities with the light-flavour baryon-to-meson ratios ${\rm p}/\pi$ and $\Lambda/\mathrm {K^0_S}$. At low $p_{\rm T}$, predictions that include additional colour-reconnection mechanisms beyond the leading-colour approximation; assume the existence of additional higher-mass charm-baryon states; or include hadronisation via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in $\mathrm {e^+e^-}$ and $\mathrm {e^-p}$ collisions significantly underestimate the data. The results presented in this letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.

8 data tables

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section in pp collisions at $\sqrt{s} = 5.02$ TeV in the rapidity interval $|y|<0.5$.

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.

The nuclear modification factor $R_\mathrm{pPb}$ of prompt $\Lambda_{\rm {c}}^{+}$ baryons in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $ -0.96\lt y \lt 0.04$.

More…

$\rm{K}^{*}(\rm{892})^{0}$ and $\phi(1020)$ production at midrapidity in pp collisions at $\sqrt{s}$ = 8 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.C 102 (2020) 024912, 2020.
Inspire Record 1762364 DOI 10.17182/hepdata.99928

The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ in pp collisions at $\sqrt{s}$ = 8 TeV was measured using Run 1 data collected by the ALICE collaboration at the LHC. The $p_{\rm{T}}$-differential yields d$^{\rm 2}N$/d$y$d$p_{\rm{T}}$ in the range $0 < p_{\rm{T}} < 20$ GeV/$c$ for $\rm{K}^{*0}$ and $0.4 < p_{\rm{T}} < 16$ GeV/$c$ for $\phi$ have been measured at midrapidity, $|y| < 0.5$. Moreover, improved measurements of the $\rm{K}^{*}(892)^{0}$ and $\phi(1020)$ at $\sqrt{s} = 7$TeV are presented. The collision energy dependence of $p_{\rm{T}}$ distributions, $p_{\rm{T}}$-integrated yields and particle ratios in inelastic pp collisions are examined. The results are also compared with different collision systems. The values of the particle ratios are found to be similar to those measured at other LHC energies. In pp collisions a hardening of the particle spectra is observed with increasing energy, but at the same time it is also observed that the relative particle abundances are independent of the collision energy. The $p_{\rm{T}}$-differential yields of $\rm{K}^{*0}$ and $\phi$ in pp collisions at $\sqrt{s} = 8$ TeV are compared with the expectations of different Monte Carlo event generators.

13 data tables
More…

$^3_\Lambda\mathrm{H}$ and $^3_{\overline{\Lambda}}\mathrm{\overline{H}}$ lifetime measurement in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV via two-body decay

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 797 (2019) 134905, 2019.
Inspire Record 1743989 DOI 10.17182/hepdata.91130

An improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been determined from an exponential fit to the d$N$/d($ct$) spectrum. The measured value, $\tau$ = 242$^{+34}_{-38}$ (stat.) $\pm$ 17 (syst.) ps, is compatible with all the available theoretical predictions, thus contributing to the solution of the longstanding hypertriton lifetime puzzle.

1 data table

(Hypertriton + Anti-Hypertriton)dN/d(ct) distribution.


$^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 360-372, 2016.
Inspire Record 1380234 DOI 10.17182/hepdata.70861

The production of the hypertriton nuclei $^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ has been measured for the first time in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE experiment at LHC energies. The total yield, d$N$/d$y$ $\times \mathrm{B.R.}_{\left( ^{3}_{\Lambda}\mathrm H \rightarrow ^{3}\mathrm{He},\pi^{-} \right)} = \left( 3.86 \pm 0.77 (\mathrm{stat.}) \pm 0.68 (\mathrm{syst.})\right) \times 10^{-5}$ in the 0-10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter $B_3$ shows a dependence on the transverse momentum, similar to the $B_2$ of deuterons and the $B_3$ of $^{3}\mathrm{He}$ nuclei. The ratio of yields $S_3$ = $^{3}_{\Lambda}\mathrm H$/($^{3}\mathrm{He}$ $\times \Lambda/\mathrm{p}$) was measured to be $S_3$ = 0.60 $\pm$ 0.13 (stat.) $\pm$ 0.21 (syst.) in 0-10% centrality events; this value is compared to different theoretical models. The measured $S_3$ is fully compatible with thermal model predictions. The measured $^{3}_{\Lambda}\mathrm H$ lifetime, $ \tau = 181^{+54}_{-39} (\mathrm{stat.}) \pm 33 (\mathrm{syst.})\ \mathrm{ps}$ is compatible within 1$\sigma$ with the world average value.

4 data tables

(Hypertriton + Anti-Hypertriton)dN/d(ct) distribution.

Hypertriton and Anti-hypertriton $p_{\rm T}$ spectra x B.R.

$B_2$ as a function of $p_{\rm T}$/A for Hypertriton.

More…

${\rm f}_{0}(980)$ production in inelastic pp collisions at $\sqrt{s} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 846 (2023) 137644, 2023.
Inspire Record 2094796 DOI 10.17182/hepdata.136307

The measurement of the production of ${\rm f}_{0}(980)$ in inelastic pp collisions at $\sqrt{s} = 5.02$ TeV is presented. This is the first reported measurement of inclusive ${\rm f}_{0}(980)$ yield at LHC energies. The production is measured at midrapidity, $|y| < 0.5$, in a wide transverse momentum range, $0 < p_{\rm T} < 16$ GeV/$c$, by reconstructing the resonance in the ${\rm f}_{0}(980) \rightarrow \pi^{+}\pi^{-}$ hadronic decay channel using the ALICE detector. The $p_{\rm T}$-differential yields are compared to those of pions, protons and $\phi$ mesons as well as to predictions from the HERWIG 7.2 QCD-inspired Monte Carlo event generator and calculations from a coalescence model that uses the AMPT model as an input. The ratio of the $p_{\rm T}$-integrated yield of ${\rm f}_{0}(980)$ relative to pions is compared to measurements in ${\rm e}^{+}{\rm e}^{-}$ and pp collisions at lower energies and predictions from statistical hadronisation models and HERWIG 7.2. A mild collision energy dependence of the ${\rm f}_{0}(980)$ to pion production is observed in pp collisions from SPS to LHC energies. All considered models underpredict the $p_{\rm T}$-integrated $2{\rm f}_{0}(980)/(\pi^{+}+\pi^{-})$ ratio. The prediction from the canonical statistical hadronisation model assuming a zero total strangeness content of ${\rm f}_{0}(980)$ is consistent with the data within 1.9$\sigma$ and is the closest to the data. The results provide an essential reference for future measurements of the particle yield and nuclear modification in p$-$Pb and Pb$-$Pb collisions, which have been proposed to be instrumental to probe the elusive nature and quark composition of the ${\rm f}_{0}(980)$ scalar meson.

4 data tables

$p_{\rm T}$-differential yields of $f_{0}(980)$ at midrapidity in the inelastic pp collisions at $\sqrt(s)$ = 5.02 TeV. The uncertainty 'syst' indicates the total systematic uncertainty and 'stat' indicates the statistical uncertainty. The branching ratio correction amounts to BR = (46 $\pm$ 6)% [ Phys. Rev. Lett. 111 no. 6, (2013) 062001] assuming dominance of $\pi\pi$ and KK channel has been applied to the $p_{\rm T}$-differential yields of $f_{0}(980)$. The normalisation and branching ratio relative uncertainties on the yields are independent of $p_{\rm{T}}$ and amount to 2.5% and 13%, respectively and therefore not included in the $p_{\rm T}$-differential yields of $f_{0}(980)$.

$p_{\rm T}$-integrated yield of $f_{0}(980)$, dN/dy at midrapidity as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$. The uncertainty 'syst' indicates the total systematic uncertainty on the measurement. The branching ratio correction amounts to BR = (46 $\pm$ 6)% [ Phys. Rev. Lett. 111 no. 6, (2013) 062001] assuming dominance of $\pi\pi$ and KK channel has been applied to the $p_{\rm T}$-differential yields of $f_{0}(980)$. Here, the branching ratio relative uncertainty (13%) for $f_{0}(980)$ is not included.

mean-$p_{\rm{T}}$ of $f_{0}(980)$, (<$p_{\rm{T}}$>) at midrapidity as a function of $\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle$. The uncertainty 'syst' indicates the total systematic uncertainty on the measurement.

More…

(Anti-)Deuteron production in pp collisions at $\sqrt{s}=13$ TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 889, 2020.
Inspire Record 1784203 DOI 10.17182/hepdata.97183

The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at $\sqrt{s}=13$ TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity ($\rm{d} N_{ch}/\rm{d}\eta\sim26$) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and Statistical Hadronisation Models (SHM).

43 data tables

Transverse momentum distributions of deuterons in the I V0M multiplicity class

Transverse momentum distributions of deuterons in the II V0M multiplicity class

Transverse momentum distributions of deuterons in the III V0M multiplicity class

More…

Version 2
A new laboratory to study hadron-hadron interactions

The ALICE collaboration Collaboration, Alice ; Acharya, Shreyasi ; Adamova, Dagmar ; et al.
Nature 588 (2020) 232-238, 2020.
Inspire Record 1797617 DOI 10.17182/hepdata.100195

One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons and so high-quality measurements exist only for hadrons containing up and down quarks. Here we demonstrate that measuring correlations in the momentum space between hadron pairs produced in ultrarelativistic proton-proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of p-omega baryon correlations, the effect of the strong interaction for this hadron-hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations. The large number of hyperons identified in proton-proton collisions at the LHC, together with an accurate modelling of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction.

4 data tables

The p--$\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Xi}^{+}$ correlation function.

The p--$\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Xi}^{+}$ correlation function.

The p--$\Omega^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Omega}^{+}$ correlation function.

More…

Accessing the strong interaction between $\Lambda$ baryons and charged kaons with the femtoscopy technique at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 845 (2023) 138145, 2023.
Inspire Record 2666805 DOI 10.17182/hepdata.143518

The interaction between $\Lambda$ baryons and kaons/antikaons is a crucial ingredient for the strangeness $S=0$ and $S=-2$ sector of the meson$-$baryon interaction at low energies. In particular, the $\Lambda{\mathrm{\overline{K}}}$ might help in understanding the origin of states such as the $\Xi\mathrm{(1620)}$, whose nature and properties are still under debate. Experimental data on $\Lambda$$-$${\mathrm{K}}$ and $\Lambda$$-$${\mathrm{\overline{K}}}$ systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of $\Lambda$$-$K$^+\oplus \overline{\Lambda}$$-$K$^-$ and $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ correlations obtained in the high-multiplicity triggered data sample in pp collisions at $\sqrt{s}=13$ TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednicky$-$Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ correlations show the presence of several structures at relative momenta $k^*$ above 200 MeV/$c$, compatible with the $\Omega$ baryon, the $\Xi\mathrm{(1690)}$, and $\Xi\mathrm{(1820)}$ resonances decaying into $\Lambda$$-$K$^-$ pairs. The low $k^*$ region in the $\Lambda$$-$K$^-\oplus \overline{\Lambda}$$-$K$^+$ also exhibits the presence of the $\Xi\mathrm{(1620)}$ state, expected to strongly couple to the measured pair. The presented data allow to access the $\Lambda$K$^+$ and $\Lambda$K$^-$ strong interaction with an unprecedented precision and deliver the first experimental observation of the $\Xi\mathrm{(1620)}$ decaying into $\Lambda$K$^-$.

4 data tables

$\Lambda K^{-}$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.

$\Lambda K^{+}$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.

$C_{background}$ correlation for $\Lambda K^{+}$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.

More…

Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 793 (2019) 420-432, 2019.
Inspire Record 1672944 DOI 10.17182/hepdata.89396

Charged-particle spectra at midrapidity are measured in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV and presented in centrality classes ranging from most central (0-5%) to most peripheral (95-100%) collisions. Possible medium effects are quantified using the nuclear modification factor ($R_{\rm AA}$) by comparing the measured spectra with those from proton-proton collisions, scaled by the number of independent nucleon-nucleon collisions obtained from a Glauber model. At large transverse momenta ($8<p_{\rm T}<20$ GeV/$c$), the average $R_{\rm AA}$ is found to increase from about $0.15$ in 0-5% central to a maximum value of about $0.8$ in 75-85% peripheral collisions, beyond which it falls off strongly to below $0.2$ for the most peripheral collisions. Furthermore, $R_{\rm AA}$ initially exhibits a positive slope as a function of $p_{\rm T}$ in the $8$-$20$ GeV/$c$ interval, while for collisions beyond the 80% class the slope is negative. To reduce uncertainties related to event selection and normalization, we also provide the ratio of $R_{\rm AA}$ in adjacent centrality intervals. Our results in peripheral collisions are consistent with a PYTHIA-based model without nuclear modification, demonstrating that biases caused by the event selection and collision geometry can lead to the apparent suppression in peripheral collisions. This explains the unintuitive observation that $R_{\rm AA}$ is below unity in peripheral Pb-Pb, but equal to unity in minimum-bias p-Pb collisions despite similar charged-particle multiplicities.

45 data tables

Nuclear modification factor RAA versus pT for charged particles at midrapidity in 0-5% central Pb-Pb collisions at 5.02 TeV

Nuclear modification factor RAA versus pT for charged particles at midrapidity in 5-10% central Pb-Pb collisions at 5.02 TeV

Nuclear modification factor RAA versus pT for charged particles at midrapidity in 10-15% central Pb-Pb collisions at 5.02 TeV

More…

Anisotropic flow and flow fluctuations of identified hadrons in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 243, 2023.
Inspire Record 2093750 DOI 10.17182/hepdata.133152

The first measurements of elliptic flow of $\pi^\pm$, ${\rm K}^\pm$, p+$\overline{\rm p}$, ${\rm K_{S}^0}$, $\Lambda$+$\overline{\Lambda}$, $\phi$, $\Xi^-$+$\Xi^+$, and $\Omega^-$+$\Omega^+$ using multiparticle cumulants in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented. Results obtained with two- ($v_2\{2\}$) and four-particle cumulants ($v_2\{4\}$) are shown as a function of transverse momentum, $p_{\rm T}$, for various collision centrality intervals. Combining the data for both $v_2\{2\}$ and $v_2\{4\}$ also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark-gluon plasma. The characteristic features observed in previous $p_{\rm T}$-differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low $p_{\rm T}$ and the approximate scaling with the number of constituent quarks at intermediate $p_{\rm T}$, are similarly present in the four-particle correlations and the combinations of $v_2\{2\}$ and $v_2\{4\}$. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide $p_{\rm T}$ range.

200 data tables

The $p_{T}$-differential $v_2$ measured with two-particle correlations with a pseudorapidity gap of $|\Delta \eta| > 0.8$ for different particle species and centralities in Pb--Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV.

The $p_{T}$-differential $v_2$ measured with two-particle correlations with a pseudorapidity gap of $|\Delta \eta| > 0.8$ for different particle species and centralities in Pb--Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV.

The $p_{T}$-differential $v_2$ measured with two-particle correlations with a pseudorapidity gap of $|\Delta \eta| > 0.8$ for different particle species and centralities in Pb--Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV.

More…

Anisotropic flow in Xe-Xe collisions at $\mathbf{\sqrt{s_{\rm{NN}}} = 5.44}$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 784 (2018) 82-95, 2018.
Inspire Record 1671792 DOI 10.17182/hepdata.84283

The first measurements of anisotropic flow coefficients $v_{\rm{n}}$ for mid-rapidity charged particles in Xe-Xe collisions at $\sqrt{s_{\rm{NN}}} = 5.44$ TeV are presented. Comparing these measurements to those from Pb-Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV, $v_{2}$ is found to be suppressed for mid-central collisions at the same centrality, and enhanced for central collisions. The values of $v_{3}$ are generally larger in Xe-Xe than in Pb-Pb at a given centrality. These observations are consistent with expectations from hydrodynamic predictions. When both $v_{2}$ and $v_{3}$ are divided by their corresponding eccentricities for a variety of initial state models, they generally scale with transverse density when comparing Xe-Xe and Pb-Pb, with some deviations observed in central Xe-Xe and Pb-Pb collisions. These results assist in placing strong constraints on both the initial state geometry and medium response for relativistic heavy-ion collisions.

6 data tables
More…

Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\snn=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 719 (2013) 18-28, 2013.
Inspire Record 1116150 DOI 10.17182/hepdata.62177

The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range $|\eta|<0.8$ at different collision centralities and as a function of transverse momentum, $p_{\rm T}$, out to $p_{\rm T}=20$ GeV/$c$. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for $p_{\rm T}>8$ GeV/$c$. The small $p_{\rm T}$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_{\rm T}=8$ GeV/$c$. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_{\rm T}=8$ GeV/$c$ indicating that the particle type dependence persists out to high $p_{\rm T}$.

16 data tables

Elliptic flow (v2) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

Elliptic flow (v2) estimated with four-particle cumulants measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

Triangular flow (v3) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

More…

Version 2
Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 132302, 2016.
Inspire Record 1419244 DOI 10.17182/hepdata.72886

We report the first results of elliptic ($v_2$), triangular ($v_3$) and quadrangular flow ($v_4$) of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region $|\eta|<0.8$ and for the transverse momentum range $0.2<p_{\rm T}<5$ GeV/$c$. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multi-particle cumulant method. Compared to results from Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV, the anisotropic flow coefficients $v_{2}$, $v_{3}$ and $v_{4}$ are found to increase by ($3.0\pm0.6$)%, ($4.3\pm1.4$)% and ($10.2\pm3.8$)%, respectively, in the centrality range 0-50%. This increase can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This comparison provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further discriminate between various possibilities for the temperature dependence of shear viscosity to entropy density ratio of the produced matter in heavy-ion collisions at the highest energies.

22 data tables

Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/$c$, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Centrality dependence of $v_2$, with two- and multi-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/$c$, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Centrality dependence of $v_3$ and $v_4$, with two-particle correlations, integrated over the $p_{\rm T}$ range 0.2 < $p_{\rm T}$ < 5.0 GeV/c, at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

More…