Femtoscopic correlations of identical charged pions and kaons in pp collisions at $\sqrt{s}=13$ TeV with event-shape selection

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 024915, 2024.
Inspire Record 2709104 DOI 10.17182/hepdata.146805

Collective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE collaboration on charged pion and kaon pairs produced in pp collisions at $\sqrt{s}=13$ TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied.

74 data tables
More…

Investigation of K$^{+}$K$^{-}$ interactions via femtoscopy in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV at the LHC

The ALICE collaboration
CERN-EP-2022-257, 2022.
Inspire Record 2601388 DOI 10.17182/hepdata.138359

Femtoscopic correlations of non-identical charged kaons ($\rm K^+ K^-$) are studied in Pb$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV by ALICE at the LHC. One-dimensional $\rm K^+ K^-$ correlation functions are analyzed in three centrality classes and eight intervals of particle-pair transverse momentum. The Lednický and Luboshitz interaction model used in the $\rm K^+ K^-$ analysis includes the final-state Coulomb interactions between kaons and the final-state interaction through $a_{0}$(980) and $f_{0}$(980) resonances. The mass of $f_{0}$(980) and coupling were extracted from the fit to $\rm K^+ K^-$ correlation functions using the femtoscopic technique for the first time. The measured mass and width of the $f_{0}$(980) resonance are consistent with other published measurements. The height of the $\phi$(1020) meson peak present in the $\rm K^+ K^-$ correlation function rapidly decreases with increasing source radius, qualitatively in agreement with an inverse volume dependence. A phenomenological fit to this trend suggests that the $\phi$(1020) meson yield is dominated by particles produced directly from the hadronization of the system. The small fraction subsequently produced by FSI could not be precisely quantified with data presented in this paper and will be assessed in future work.

18 data tables

K+K- correlation function for 0.3<kT<0.4 GeV/c and centrality class 0-10%

K+K- correlation function for 0.5<kT<0.6 GeV/c and centrality class 0-10%

K+K- correlation function for 0.8<kT<1.0 GeV/c and centrality class 0-10%

More…

Two-particle transverse momentum correlations in pp and p-Pb collisions at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 107 (2023) 054617, 2023.
Inspire Record 2182733 DOI 10.17182/hepdata.137819

Two-particle transverse momentum differential correlators, recently measured in Pb--Pb collisions at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain insights into particle production mechanisms and infer transport properties, such as the ratio of shear viscosity to entropy density, of the medium created in Pb-Pb collisions. The longitudinal long-range correlations and the large azimuthal anisotropy measured at low transverse momenta in small collision systems, namely pp and p-Pb, at LHC energies resemble manifestations of collective behaviour. This suggests that locally equilibrated matter may be produced in these small collision systems, similar to what is observed in Pb-Pb collisions. In this work, the same two-particle transverse momentum differential correlators are exploited in pp and p-Pb collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s_{\rm NN}} = 5.02$ TeV, respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correlators are studied as a function of the produced particle multiplicity to identify evidence for longitudinal broadening that might reveal the presence of viscous effects in these smaller systems. The measured correlators and their evolution from pp and p--Pb to Pb--Pb collisions are additionally compared to predictions from Monte Carlo event generators, and the potential presence of viscous effects is discussed.

24 data tables

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 0$-$5% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 30$-$40% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CD}$ for 70$-$80% multiplicity class pp collisions at $\sqrt{s}=7\;\text{TeV}$.

More…

Towards the understanding of the genuine three-body interaction for p$-$p$-$p and p$-$p$-\Lambda$

The ALICE collaboration
CERN-EP-2022-110, 2022.
Inspire Record 2092560 DOI 10.17182/hepdata.134041

Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p$-$p$-$p and p$-$p$-\Lambda$ systems in terms of three-particle mixed moments carried out for pp collisions at $\sqrt{s}$ = 13 TeV. Three-particle cumulants are extracted from the normalised mixed moments by applying the Kubo formalism, where the three-particle interaction contribution to these moments can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p$-$p$-$p system, hinting to the presence of a residual three-body effect while for p$-$p$-\Lambda$ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.

11 data tables

The (p-p)-p correlation function obtained using the data-driven approach

The (p-p)-$\Lambda$ correlation function obtained using the data-driven approach

The p-(p-$\Lambda$) correlation function obtained using the data-driven approach

More…

Constraining the ${\rm\overline{K}N}$ coupled channel dynamics using femtoscopic correlations at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 340, 2023.
Inspire Record 2088954 DOI 10.17182/hepdata.132766

The interaction of $\rm{K}^{-}$ with protons is characterised by the presence of several coupled channels, systems like ${\rm \overline{K}^0}$n and $\pi\Sigma$ with a similar mass and the same quantum numbers as the $\rm{K}^{-}$p state. The strengths of these couplings to the $\rm{K}^{-}$p system are of crucial importance for the understanding of the nature of the $\Lambda(1405)$ resonance and of the attractive $\rm{K}^{-}$p strong interaction. In this article, we present measurements of the $\rm{K}^{-}$p correlation functions in relative momentum space obtained in pp collisions at $\sqrt{s}~=~13$ TeV, in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV, and (semi)peripheral Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV. The emitting source size, composed of a core radius anchored to the $\rm{K}^{+}$p correlation and of a resonance halo specific to each particle pair, varies between 1 and 2 fm in these collision systems. The strength and the effects of the ${\rm \overline{K}^0}$n and $\pi\Sigma$ inelastic channels on the measured $\rm{K}^{-}$p correlation function are investigated in the different colliding systems by comparing the data with state-of-the-art models of chiral potentials. A novel approach to determine the conversion weights $\omega$, necessary to quantify the amount of produced inelastic channels in the correlation function, is presented. In this method, particle yields are estimated from thermal model predictions, and their kinematic distribution from blast-wave fits to measured data. The comparison of chiral potentials to the measured $\rm{K}^{-}$p interaction indicates that, while the $\pi\Sigma-\rm{K}^{-}$p dynamics is well reproduced by the model, the coupling to the ${\rm \overline{K}^0}$n channel in the model is currently underestimated.

17 data tables

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in pp collisions at $\sqrt{s}=13$ TeV.

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in p-Pb collisions at $\sqrt{s_{\mathrm {NN}}}=5.02 $ TeV (0-20%).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV (20-40%).

More…

First measurement of the $\Lambda$-$\Xi$ interaction in proton-proton collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 844 (2023) 137223, 2023.
Inspire Record 2070418 DOI 10.17182/hepdata.133168

The first experimental information on the strong interaction between $\Lambda$ and $\Xi^-$ strange baryons is presented in this Letter. The correlation function of $\Lambda-\Xi^-$ and $\overline{\Lambda}-\overline{\Xi}^{+}$ pairs produced in high-multiplicity proton-proton (pp) collisions at $\sqrt{s}$ = 13 TeV at the LHC is measured as a function of the relative momentum of the pair. The femtoscopy method is used to calculate the correlation function, which is then compared with theoretical expectations obtained using a meson exchange model, chiral effective field theory, and Lattice QCD calculations close to the physical point. Data support predictions of small scattering parameters while discarding versions with large ones, thus suggesting a weak $\Lambda-\Xi^{-}$ interaction. The limited statistical significance of the data does not yet allow one to constrain the effects of coupled channels like $\Sigma-\Xi$ and N$-\Omega$.

1 data table

The $\Lambda$--$\Xi^{-}$ $\oplus$ $\overline{\Lambda}$--$\overline{\Xi}^{+}$ correlation function and the $\lambda$ parameters with the parametrization of the background contribution $C_\mathrm{mis.}(k^*)$


Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 82 (2022) 335, 2022.
Inspire Record 1946828 DOI 10.17182/hepdata.128823

Angular correlations of heavy-flavour and charged particles in high-energy proton-proton collisions are sensitive to the production mechanisms of heavy quarks and to their fragmentation as well as hadronisation processes. The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV with the ALICE detector is reported, considering D$^{0}$, D$^{+}$, and D$^{*+}$ mesons in the transverse-momentum interval $3 < p_{\rm T} < 36$ GeV/$c$ at midrapidity ($|y| < 0.5$), and charged particles with $p_{\rm T} > 0.3$ GeV/$c$ and pseudorapidity $|\eta| < 0.8$. This measurement has an improved precision and provides an extended transverse-momentum coverage compared to previous ALICE measurements at lower energies. The study is also performed as a function of the charged-particle multiplicity, showing no modifications of the correlation function with multiplicity within uncertainties. The properties and the transverse-momentum evolution of the near- and away-side correlation peaks are studied and compared with predictions from various Monte Carlo event generators. Among those considered, PYTHIA8 and POWHEG+PYTHIA8 provide the best description of the measured observables. The obtained results can provide guidance on tuning the generators.

56 data tables

Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, and D$^{*+}$) with $3 < p_{\rm T} < 5$ GeV/$c$ and charged particles with $0.3 < p_{\rm T} < 1$ GeV/$c$, in pp collisions at $\sqrt{s} = $5, 7, and 13 TeV, after baseline subtraction. Rapidity range for the D mesons is $|y^{\rm D}_{\rm cms}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.

Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, and D$^{*+}$) with $8 < p_{\rm T} < 16$ GeV/$c$ and charged particles with $0.3 < p_{\rm T} < 1$ GeV/$c$, in pp collisions at $\sqrt{s} = $5, 7, and 13 TeV, after baseline subtraction. Rapidity range for the D mesons is $|y^{\rm D}_{\rm cms}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.

Comparison of the azimuthal-correlation distributions of D mesons (average of D$^{0}$, D$^{+}$, and D$^{*+}$) with $16 < p_{\rm T} < 24$ GeV/$c$ and charged particles with $0.3 < p_{\rm T} < 1$ GeV/$c$, in pp collisions at $\sqrt{s} = $5, 7, and 13 TeV, after baseline subtraction. Rapidity range for the D mesons is $|y^{\rm D}_{\rm cms}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.

More…

General balance functions of identified charged hadron pairs of $(\pi,{\rm K},{\rm p})$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 833 (2022) 137338, 2022.
Inspire Record 1943964 DOI 10.17182/hepdata.132486

First measurements of balance functions (BFs) of all combinations of identified charged hadron $(\pi,\rm K,\rm p)$ pairs in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV recorded by the ALICE detector are presented. The BF measurements are carried out as two-dimensional differential correlators versus the relative rapidity ($\Delta y$) and azimuthal angle ($\Delta\varphi$) of hadron pairs, and studied as a function of collision centrality. The $\Delta\varphi$ dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark$-$gluon plasma. While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the longitudinal widths exhibit mixed behaviors: BFs of $\pi\pi$ and cross-species pairs narrow significantly in more central collisions, whereas those of $\rm KK$ and $\rm pp$ are found to be independent of collision centrality. This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of the collision centrality evolution of BF integrals are presented, with the observation that charge balancing fractions are nearly independent of collision centrality in Pb$-$Pb collisions. Overall, the results presented provide new and challenging constraints for theoretical models of hadron production and transport in relativistic heavy-ion collisions.

24 data tables

Balance function $B^{\pi\pi}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).

Balance function $B^{{\rm KK}}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).

Balance function $B^{{\rm p\bar{p}}}$ measured in semicentral Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$ ($\pi,{\rm K}: 0.2 \leq p_{\rm T} \leq 2.0\;{\rm GeV}/c$; ${\rm p}: 0.5 \leq p_{\rm T} \leq 2.5\;{\rm GeV}/c$).

More…

Kaon-proton strong interaction at low relative momentum via femtoscopy in Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136708, 2021.
Inspire Record 1863041 DOI 10.17182/hepdata.114016

In quantum scattering processes between two particles, aspects characterizing the strong and Coulomb forces can be observed in kinematic distributions of the particle pairs. The sensitivity to the interaction potential reaches a maximum at low relative momentum and vanishing distance between the two particles. Ultrarelativistic heavy-ion collisions at the LHC provide an abundant source of many hadron species and can be employed as a measurement method of scattering parameters that is complementary to scattering experiments. This study confirms that momentum correlations of particles produced in Pb-Pb collisions at the LHC provide an accurate measurement of kaon-proton scattering parameters at low relative momentum, allowing precise access to the $ {K}^{-} p\rightarrow {K}^{-} p$ process. This work also validates the femtoscopic measurement in ultrarelativistic heavy-ion collisions as an alternative to scattering experiments and a complementary tool to the study of exotic atoms with comparable precision. In this work, the first femtoscopic measurement of momentum correlations of ${K}^{-} p\ ({K}^{+}\overline{p})$ and ${K}^{+}p ({K}^{-}\overline{p})$ pairs in Pb-Pb collisions at centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}} = 5.02$ TeV registered by the ALICE experiment is reported. The components of the ${K}^{-} p$ complex scattering length are extracted and found to be $\Re f_0=-0.91\pm~{0.03}$(stat)$^{+0.17}_{-0.03}$(syst) and $\Im f_0 = 0.92\pm~{0.05}$(stat)$^{+0.12}_{-0.33}$(syst). The results are compared with chiral effective field theory predictions as well as with existing data from dedicated scattering and exotic kaonic atom experiments.

12 data tables

K p (opposite charge) correlation function for centrality 0-5% from Pb-Pb collisions at 5020 GeV

K p (same charge) correlation function for centrality 0-5% from Pb-Pb collisions at 5020 GeV

K p (opposite charge) correlation function for centrality 5-10% from Pb-Pb collisions at 5020 GeV

More…

Experimental evidence for an attractive p-$\phi$ interaction

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 172301, 2021.
Inspire Record 1863040 DOI 10.17182/hepdata.113758

This Letter presents the first experimental evidence of the attractive strong interaction between a proton and a $\phi$ meson. The result is obtained from two-particle correlations of combined p-$\phi \oplus \overline{\rm {p}}$-$\phi$ pairs measured in high-multiplicity pp collisions at $\sqrt{s}~=~13$ TeV by the ALICE collaboration. The spin-averaged scattering length and effective range of the p-$\phi$ interaction are extracted from the fully corrected correlation function employing the Lednický-Lyuboshits approach. In particular, the imaginary part of the scattering length vanishes within uncertainties, indicating that inelastic processes do not play a prominent role for the p-$\phi$ interaction. These data demonstrate that the interaction is dominated by elastic p-$\phi$ scattering. Furthermore, an analysis employing phenomenological Gaussian- and Yukawa-type potentials is conducted. Under the assumption of the latter, the N-$\phi$ coupling constant is found to be $g_{\rm{N}-\phi} = 0.14\pm 0.03\,(\mathrm{stat.})\pm 0.02\,(\mathrm{syst.})$. This work provides valuable experimental input to accomplish a self-consistent description of the N-$\phi$ interaction, which is particularly relevant for the more fundamental studies on partial restoration of chiral symmetry in nuclear medium.

2 data tables

Measured $\mathrm{p}-\phi$ $\oplus$ $\overline{\mathrm{p}}-\phi$ correlation function.

Genuine $\mathrm{p}-\phi$ $\oplus$ $\overline{\mathrm{p}}-\phi$ correlation function.