Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}}$ = 2.76 TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Eur.Phys.J.C 77 (2017) 658, 2017.
Inspire Record 1611301 DOI 10.17182/hepdata.78549

The transverse momentum ($p_{\rm T}$) spectra and elliptic flow coefficient ($v_2$) of deuterons and anti-deuterons at mid-rapidity ($|y|<0.5$) are measured with the ALICE detector at the LHC in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. The measurement of the $p_{\rm T}$ spectra of (anti-)deuterons is done up to 8 GeV/$c$ in 0-10% centrality class and up to GeV/$c$ in 10-20% and 20-40% centrality classes. The $v_2$ is measured in the $0.8 <p_{\rm T} <5$ GeV/$c$ interval and in six different centrality intervals (0-5%, 5-10%, 10-20%, 20-30%, 30-40% and 40-50%) using the scalar product technique. Measured $\pi^{\pm}$, K$^{\pm}$ and p+$\overline{\mathrm{p}}$ transverse-momentum spectra and $v_2$ are used to predict the deuteron $p_{\rm T}$ spectra and $v_2$ within the Blast-Wave model. The predictions are able to reproduce the $v_2$ coefficient in the measured $p_{\rm T}$ range and the transverse-momentum spectra for $p_{\rm T}>1.8$ GeV/$c$ within the experimental uncertainties. The measurement of the coalescence parameter $B_2$ is performed, showing a $p_{\rm T}$ dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured $v_2$ coefficient. In addition, the coalescence parameter $B_2$ and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured $v_2$($p_{\rm T}$) and the $B_2$($p_{\rm T}$) trend.

5 data tables

Deuteron $p_{\mathrm T}$ spectra for $p_{\mathrm T} > $ 4.4 GeV/$c$. Low $p_{\mathrm T}$ points can be found here 'http://hepdata.cedar.ac.uk/view/ins1380491'

$\overline{\mathrm d}/ d $ vs $p_{\mathrm T}$ for $p_{\mathrm T} > $ 4.4 GeV/$c$. Low $p_{\mathrm T}$ points can be found here 'http://hepdata.cedar.ac.uk/view/ins1380491'

v2 of anti-deuterons and deuterons vs $p_{\mathrm T}$ for different centrality intervals

More…

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
JHEP 09 (2017) 032, 2017.
Inspire Record 1610453 DOI 10.17182/hepdata.80521

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|\eta|<0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results have been found for p-Pb collisions at 5.02 TeV. These measurements are compared to hydrodynamic model calculations with event-by-event geometry fluctuations in the initial state to constrain the initial conditions and transport properties of the matter created in Pb-Pb and p-Pb collisions.

24 data tables

$v_2\{2\}$ with $|\eta| > 0.0$ for centrality class 0-5\% in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.

$v_2\{2\}$ with $|\eta| > 0.0$ for centrality class 5-10\% in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.

$v_2\{2\}$ with $|\eta| > 0.0$ for centrality class 10-20\% in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.

More…

D-meson azimuthal anisotropy in mid-central Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Rev.Lett. 120 (2018) 102301, 2018.
Inspire Record 1608612 DOI 10.17182/hepdata.78255

The azimuthal anisotropy coefficient $v_2$ of prompt D$^0$, D$^+$, D$^{*+}$ and D$_s^+$ mesons was measured in mid-central (30-50% centrality class) Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at mid-rapidity, $|y|<0.8$, in the transverse momentum interval $1<p_{\rm T}<24$ GeV/$c$. The measured D-meson $v_2$ has similar values as that of charged pions. The D$_s^+$ $v_2$, measured for the first time, is found to be compatible with that of non-strange D mesons. The measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.

5 data tables

$v_2$ vs. $p_{\rm T}$ of $D^0$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

$v_2$ vs. $p_{\rm T}$ of $D^+$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

$v_2$ vs. $p_{\rm T}$ of $D^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.

More…

Measuring K$^0_{\rm S}$K$^{\rm \pm}$ interactions using Pb-Pb collisions at ${\sqrt{s_{\rm NN}}=2.76}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Lett.B 774 (2017) 64-77, 2017.
Inspire Record 1599554 DOI 10.17182/hepdata.80522

We present the first ever measurements of femtoscopic correlations between the K$^0_{\rm S}$ and K$^{\rm \pm}$ particles. The analysis was performed on the data from Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the $a_0(980)$ resonance. The extracted kaon source radius and correlation strength parameters for K$^0_{\rm S}$K$^{\rm -}$ are found to be equal within the experimental uncertainties to those for K$^0_{\rm S}$K$^{\rm +}$. Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the $a_0$ resonance are constrained. Our results are also compatible with the interpretation of the $a_0$ having a tetraquark structure over that of a diquark.

13 data tables

Raw K0s K+ correlation function for all kT bin

Raw K0s K+ correlation function for kT < 0.675 GeV/c bin

Raw K0s K+ correlation function for kT > 0.675 GeV/c bin

More…

Linear and non-linear flow modes in Pb-Pb collisions at $\sqrt{s_{\rm NN}} =$ 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Lett.B 773 (2017) 68-80, 2017.
Inspire Record 1599396 DOI 10.17182/hepdata.89395

The second and the third order anisotropic flow, $V_{2}$ and $V_3$, are mostly determined by the corresponding initial spatial anisotropy coefficients, $\varepsilon_{2}$ and $\varepsilon_{3}$, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, $V_n$ ($n > 3$), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow $V_n$ for $n=4$, $5$, $6$ with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range $|\eta| < 0.8$ and the transverse momentum range $0.2 < p_{\rm T} < 5.0$ GeV/$c$ as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.

21 data tables

Study of relationship between linear and non-linear modes in higher order anisotropic flow in Pb–Pb collisions at 2.76 TeV.

Study of relationship between linear and non-linear modes in higher order anisotropic flow in Pb–Pb collisions at 2.76 TeV.

Study of relationship between linear and non-linear modes in higher order anisotropic flow in Pb–Pb collisions at 2.76 TeV.

More…

J/$\psi$ production as a function of charged-particle pseudorapidity density in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Adamová, D. ; Aggarwal, Madan Mohan ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 776 (2018) 91-104, 2018.
Inspire Record 1589286 DOI 10.17182/hepdata.80256

We report measurements of the inclusive J/$\psi$ yield and average transverse momentum as a function of charged-particle pseudorapidity density ${\rm d}N_{\rm ch}/{\rm d}\eta$ in p-Pb collisions at $\sqrt{s_{\rm NN}}= 5.02$ TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/$\psi$ yield with normalised ${\rm d}N_{\rm ch}/{\rm d}\eta$, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/$\psi$ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.

6 data tables

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for forward rapidities 2.03 < y_cms < 3.53 (p-going direction).

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for backward rapidities -4.46 < y_cms < -2.96 (Pb-going direction).

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for central rapidities -1.37 < y_cms < 0.43.

More…

Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 118 (2017) 162302, 2017.
Inspire Record 1512772 DOI 10.17182/hepdata.78231

We present the first measurement of the two-particle transverse momentum differential correlation function, $P_2\equiv\langle \Delta p_{\rm T} \Delta p_{\rm T} \rangle /\langle p_{\rm T} \rangle^2$, in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} =$ 2.76 TeV. Results for $P_2$ are reported as a function of relative pseudorapidity ($\Delta \eta$) and azimuthal angle ($\Delta \varphi$) between two particles for different collision centralities. The $\Delta \phi$ dependence is found to be largely independent of $\Delta \eta$ for $|\Delta \eta| \geq$ 0.9. In 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around $\Delta \varphi = \pi$ (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of $P_2$, studied as a function of collision centrality, show that correlations at $|\Delta \eta| \geq$ 0.9 can be well reproduced by a flow ansatz based on the notion that measured momentum correlations are strictly determined by the collective motion of the system.

19 data tables

Projection of $P_{2}$ along $\Delta\varphi$ in 0-5% centrality in the range $|\Delta \eta| \geq$ 0.9

$v_{2}$ coefficients measured from $P_2$ for particle pairs in the range $0.2 \leq |\Delta\eta| \leq 0.9$.

$v_{2}$ coefficients measured from $P_2$ for particle pairs in the range $0.9 \leq |\Delta\eta| \leq 1.9$.

More…

Azimuthally differential pion femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV

The ALICE collaboration Adamova, Dagmar ; Aggarwal, Madan Mohan ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 118 (2017) 222301, 2017.
Inspire Record 1512303 DOI 10.17182/hepdata.77905

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm NN}}=2.76$ TeV. The measurements have been performed in the centrality range 0-50% and for pion pair transverse momenta $0.2 < k_{\rm T} < 0.7$ GeV/$c$. We find that the $R_{\rm side}$ and $R_{\rm out}$ radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider (RHIC). The final-state source eccentricity, estimated via $R_{\rm side}$ oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive; indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3+1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum $R_{\rm side}$ oscillations, but systematically underestimate the oscillation magnitude.

56 data tables

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

The azimuthal dependence of $R_{out}^{2}$ as a function of $\Delta\varphi=\varphi_{\mathrm{pair}}-\Psi_{\mathrm EP,2}$ for the centrality 20--30% and different $k_{\mathrm{T}}$ ranges.

More…

Production of muons from heavy-flavour hadron decays in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{NN}} = 5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 770 (2017) 459-472, 2017.
Inspire Record 1512297 DOI 10.17182/hepdata.77600

The production of muons from heavy-flavour hadron decays in p-Pb collisions at $\sqrt{{\textit s}_{\rm NN}}=5.02$ TeV was studied for $2 < p_{\rm T} < 16$ GeV/$c$ with the ALICE detector at the CERN LHC. The measurement was performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of rapidity in the center-of-mass system (cms) $2.03<y_{\rm cms}<3.53$ and $-4.46<y_{\rm cms}<-2.96$, respectively. The production cross sections and nuclear modification factors are presented as a function of transverse momentum ($p_{\rm T}$). At forward rapidity, the nuclear modification factor is compatible with unity while at backward rapidity, in the interval $2.5<p_{\rm T}<3.5$ GeV/$c$, it is above unity by more than 2$\sigma$. The ratio of the forward-to-backward production cross sections is also measured in the overlapping interval $2.96 < \vert y_{\rm cms} \vert < 3.53$ and is smaller than unity by 3.7$\sigma$ in $2.5<p_{\rm T}<3.5$ GeV/$c$. The data are described by model calculations including cold nuclear matter effects.

6 data tables

pT-differential production cross section of heavy-flavour decay muons at forward rapidity (proton-going side) and backward rapidity (Pb-going side)

pT-differential nuclear modification factor of heavy-flavour decay muons at forward rapidity (proton-going side)

pT-differential nuclear modification factor of heavy-flavour decay muons at backward rapidity (Pb-going side)

More…

Production of $\pi^0$ and $\eta$ mesons up to high transverse momentum in pp collisions at 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 339, 2017.
Inspire Record 1512110 DOI 10.17182/hepdata.77976

The invariant differential cross sections for inclusive $\pi^{0}$ and $\eta$ mesons at midrapidity were measured in pp collisions at $\sqrt{s}=2.76$ TeV for transverse momenta $0.4<p_{\rm T}<40$ GeV/$c$ and $0.6<p_{\rm T}<20$ GeV/$c$, respectively, using the ALICE detector. This large range in $p_{\rm T}$ was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). In particular, a new single-cluster, shower-shape based method was developed for the identification of high-$p_{\rm T}$ neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. The measured cross sections are found to exhibit a similar power-law behavior with an exponent of about $6.3$. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about $30$% for the $\pi^0$, and between $30$-$50$% for the $\eta$ meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than $10$-$30$%, except at $p_{\rm T}<1$ GeV/$c$. The new data can therefore be used to further improve the theoretical description of $\pi^{0}$ and $\eta$ meson production.

5 data tables

Invariant differential yields of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the normalization uncertainties of 5.7% are not included in the systematic error.

Invariant differential yields of $\eta$ produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the normalization uncertainties of 5.7% are not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of $\sigma_{MB}$ of 2.5% is not included in the systematic error.

More…