Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb-Pb and Xe-Xe collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 846 (2023) 137453, 2023.
Inspire Record 2070420 DOI 10.17182/hepdata.134258

Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons $v_2${$\Psi_{\rm SP}$} in collisions of Pb ions at center-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$=2.76 TeV and Xe ions at $\sqrt{s_{\rm NN}}$=5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum. The ratio between $v_2${$\Psi_{\rm SP}$} and the elliptic flow coefficient relative to the participant plane $v_2$4, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models of initial state fluctuations. A significant transverse momentum dependence of the ratio $v_2${$\Psi_{\rm SP}$}/$v_2${4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state fluctuations. The ratios of $v_2${$\Psi_{\rm SP}$} and $v_2${4} to the corresponding initial state eccentricities for Xe-Xe and Pb-Pb collisions at similar initial entropy density show a difference of $(7.0 \pm 0.9)$% with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark-gluon plasma.

13 data tables

Centrality dependence of $v_2\{\Psi_{\mathrm{SP}}\}$, $v_2\{2,|\Delta\eta|>1\}$, and $v_2\{4\}$ in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76~\mathrm{TeV}$.

Centrality dependence of $v_2\{\Psi_{\mathrm{SP}}\}$, $v_2\{2,|\Delta\eta|>1\}$, and $v_2\{4\}$ in Xe-Xe collisions at $\sqrt{s_{\mathrm{NN}}}=5.44~\mathrm{TeV}$.

Centrality dependence of $v_2\{\Psi_{\mathrm{SP}}\}/v_2\{4\}$ and $v_2\{2,|\Delta\eta|>1\}/v_2\{4\}$ in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76~\mathrm{TeV}$.

More…

Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 024, 2023.
Inspire Record 2071861 DOI 10.17182/hepdata.134246

The first measurement of the ${\rm e}^{+}{\rm e}^{-}$ pair production at low lepton pair transverse momentum ($p_{\rm T,ee}$) and low invariant mass ($m_{\rm ee}$) in non-central Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity ($|\eta_{\rm e}| < 0.8$) as a function of invariant mass ($0.4 \leq m_{\rm ee} < 2.7$ GeV/$c^2$) in the 50$-$70% and 70$-$90% centrality classes for $p_{\rm T,ee} < 0.1$ GeV/$c$, and as a function of $p_{\rm T,ee}$ in three $m_{\rm ee}$ intervals in the most peripheral Pb$-$Pb collisions. Below a $p_{\rm T,ee}$ of 0.1 GeV/$c$, a clear excess of ${\rm e}^{+}{\rm e}^{-}$ pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The $m_{\rm ee}$ excess spectra are reproduced, within uncertainties, by different predictions of the photon$-$photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the $p_{\rm T,ee}$ spectra. The measured $\sqrt{\langle p_{\rm T,ee}^{2} \rangle}$ of the excess $p_{\rm T,ee}$ spectrum in peripheral Pb$-$Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region.

10 data tables

Differential $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

Differential $e^+e^-$ yield in 70--90\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.

Differential excess $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

More…

$\Sigma(1385)^{\pm}$ resonance production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 351, 2023.
Inspire Record 2088201 DOI 10.17182/hepdata.134042

Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/$c$, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the $\Sigma(1385)^{\pm}$ particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/$c$. The first measurement of the $\Sigma(1385)^{\pm}$ resonance production at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}= 5.02$ TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, $\Lambda\pi$, as a function of the transverse momentum ($p_{\rm T}$) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For $\Sigma(1385)^{\pm}$, a similar behaviour as ${\rm K}^{*} (892)^{0}$ is observed in data unlike the predictions of EPOS3 with afterburner.

11 data tables

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (0-10% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (30-50% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (50-90% multiplicity class).

More…

Towards the understanding of the genuine three-body interaction for p$-$p$-$p and p$-$p$-\Lambda$

The ALICE collaboration
CERN-EP-2022-110, 2022.
Inspire Record 2092560 DOI 10.17182/hepdata.134041

Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p$-$p$-$p and p$-$p$-\Lambda$ systems in terms of three-particle mixed moments carried out for pp collisions at $\sqrt{s}$ = 13 TeV. Three-particle cumulants are extracted from the normalised mixed moments by applying the Kubo formalism, where the three-particle interaction contribution to these moments can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p$-$p$-$p system, hinting to the presence of a residual three-body effect while for p$-$p$-\Lambda$ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.

11 data tables

The (p-p)-p correlation function obtained using the data-driven approach

The (p-p)-$\Lambda$ correlation function obtained using the data-driven approach

The p-(p-$\Lambda$) correlation function obtained using the data-driven approach

More…

Measurement of the production of charm jets tagged with ${\rm D^0}$ mesons in pp collisions at $\sqrt{s}$ = 5.02 and 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 133, 2023.
Inspire Record 2070667 DOI 10.17182/hepdata.134031

The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5<p_{\rm T;chjet}<50$ GeV/$c$, pseudorapidity $|\eta_{\rm jet}| <0.9-R$, and with the jet resolution parameters $R$ = 0.2, 0.4, 0.6. The distribution of the jet momentum fraction carried by a ${\rm D^0}$ meson along the jet axis ($z^{\rm ch}_{||}$) was measured in the range $0.4 < z^{\rm ch}_{||} < 1.0$ in four ranges of the jet transverse momentum. Comparisons of results for different collision energies and jet resolution parameters are also presented. The measurements are compared to predictions from Monte Carlo event generators based on leading-order and next-to-leading-order perturbative quantum chromodynamics calculations. A generally good description of the main features of the data is obtained in spite of a few discrepancies at low $p_{\rm T;chjet}$. Measurements were also done for $R = 0.3$ at $\sqrt{s}$ = 5.02 TeV and are shown along with their comparisons to theoretical predictions in an appendix to this paper.

11 data tables

$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=13$ TeV.

$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=5.02$ TeV.

Ratio of $p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons in pp collisions at $\sqrt{s}=13$ TeV to $\sqrt{s}=5.02$ TeV for $R=0.2$, $0.4$, and $0.6$.

More…

First measurement of the $\Lambda$-$\Xi$ interaction in proton-proton collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 844 (2023) 137223, 2023.
Inspire Record 2070418 DOI 10.17182/hepdata.133168

The first experimental information on the strong interaction between $\Lambda$ and $\Xi^-$ strange baryons is presented in this Letter. The correlation function of $\Lambda-\Xi^-$ and $\overline{\Lambda}-\overline{\Xi}^{+}$ pairs produced in high-multiplicity proton-proton (pp) collisions at $\sqrt{s}$ = 13 TeV at the LHC is measured as a function of the relative momentum of the pair. The femtoscopy method is used to calculate the correlation function, which is then compared with theoretical expectations obtained using a meson exchange model, chiral effective field theory, and Lattice QCD calculations close to the physical point. Data support predictions of small scattering parameters while discarding versions with large ones, thus suggesting a weak $\Lambda-\Xi^{-}$ interaction. The limited statistical significance of the data does not yet allow one to constrain the effects of coupled channels like $\Sigma-\Xi$ and N$-\Omega$.

1 data table

The $\Lambda$--$\Xi^{-}$ $\oplus$ $\overline{\Lambda}$--$\overline{\Xi}^{+}$ correlation function and the $\lambda$ parameters with the parametrization of the background contribution $C_\mathrm{mis.}(k^*)$


Photoproduction of low-$p_{\rm T}$ J/$\psi$ from peripheral to central Pb$-$Pb collisions at 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 846 (2023) 137467, 2023.
Inspire Record 2071183 DOI 10.17182/hepdata.134024

An excess of J/$\psi$ yield at very low transverse momentum ($p_{\rm T} < 0.3$ GeV/$c$), originating from coherent photoproduction, is observed in peripheral and semicentral hadronic Pb$-$Pb collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}} = 5.02$ TeV. The measurement is performed with the ALICE detector via the dimuon decay channel at forward rapidity ($2.5<y<4$). The nuclear modification factor at very low $p_{\rm T}$ and the coherent photoproduction cross section are measured as a function of centrality down to the 10% most central collisions. These results extend the previous study at $\sqrt{s_{\rm NN}} = 2.76$ TeV, confirming the clear excess over hadronic production in the $p_{\rm T}$ range 0$-$0.3 GeV/$c$ and the centrality range 70$-$90%, and establishing an excess with a significance greater than 5$\sigma$ also in the 50$-$70% and 30$-$50% centrality ranges. The results are compared with earlier measurements at $\sqrt{s_{\rm NN}} = 2.76$ TeV and with different theoretical predictions aiming at describing how coherent photoproduction occurs in hadronic interactions with nuclear overlap.

5 data tables

J/$\psi$ nuclear modification factor as a function of $\langle N_{\rm part}\rangle$ measured in the rapidity range 2.5 < y < 4 for $p_{\rm T}$ < 0.3 GeV/c. The centrality-correlated uncertainty of 7.2% is not included.

J/$\psi$ nuclear modification factor as a function of $\langle N_{\rm part} \rangle$ measured in the rapidity range 2.5 < y < 4 for 0.3 < $p_{\rm T}$ < 1 GeV/c. The centrality-correlated uncertainty of 6.6% is not included.

J/$\psi$ nuclear modification factor as a function of $\langle N_{\rm part} \rangle$ measured in the rapidity range 2.5 < y < 4 for 1 < $p_{\rm T}$ < 2 GeV/c. The centrality-correlated uncertainty of 6.2% is not included.

More…

First study of the two-body scattering involving charm hadrons

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 106 (2022) 052010, 2022.
Inspire Record 2011222 DOI 10.17182/hepdata.133153

This article presents the first measurement of the interaction between charm hadrons and nucleons. The two-particle momentum correlations of $\mathrm{pD^-}$ and $\mathrm{\overline{p}D}^+$ pairs are measured by the ALICE Collaboration in high-multiplicity pp collisions at $\sqrt{s} = 13~\mathrm{TeV}$. The data are compatible with the Coulomb-only interaction hypothesis within (1.1-1.5)$\sigma$. The level of agreement slightly improves if an attractive nucleon(N)$\overline{\mathrm{D}}$ strong interaction is considered, in contrast to most model predictions which suggest an overall repulsive interaction. This measurement allows for the first time an estimation of the 68% confidence level interval for the isospin $\mathrm{I}=0$ inverse scattering length of the $\mathrm{N\overline{D}}$ state ${f_{0,~\mathrm{I}=0}^{-1} \in [-0.4,0.9]~\mathrm{fm^{-1}}}$, assuming negligible interaction for the isospin $\mathrm{I}=1$ channel.

3 data tables

$\mathrm{pD^-}$ $\oplus$ $\mathrm{\overline{p}D^+}$ momentum correlation function as a function of the relative momentum in the particle-pair rest frame $k^*$ in high-multiplicity (0-0.17%) pp collisions at $\sqrt{s}=13$ TeV.

$1\sigma$ confidence interval for the $\mathrm{N\overline{D}}$ inverse scattering length for the isospin $\mathrm{I}=0$ channel, $f_{0,~\mathrm{I}=0}^{-1}$, as a function of the effective source radius $R_\mathrm{eff}$.

Best fit for the $\mathrm{N\overline{D}}$ inverse scattering length for the isospin $\mathrm{I}=0$ channel, $f_{0,~\mathrm{I}=0}^{-1}$, as a function of the effective source radius $R_\mathrm{eff}$.


Measurement of inclusive and leading subjet fragmentation in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2023) 245, 2023.
Inspire Record 2070434 DOI 10.17182/hepdata.133562

This article presents new measurements of the fragmentation properties of jets in both proton-proton (pp) and heavy-ion collisions with the ALICE experiment at the LHC. We report distributions of the fraction $z_r$ of transverse momentum carried by subjets of radius $r$ within jets of radius $R$. Charged-particle jets are reconstructed at midrapidity using the anti-$k_{\rm{T}}$ algorithm with jet radius $R=0.4$, and subjets are reconstructed by reclustering the jet constituents using the anti-$k_{\rm{T}}$ algorithm with radii $r=0.1$ and $r=0.2$. In pp collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the $z_r$ distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet fragmentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The $z_r$ distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark-gluon plasma (QGP). We find no significant modification of $z_r$ distributions in Pb-Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for $z_r<0.95$, as predicted by several jet quenching models. As $z_r \rightarrow 1$ our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP.

13 data tables

Inclusive subjet $z_r$ in pp collisions for $r=0.1$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Inclusive subjet $z_r$ in pp collisions for $r=0.2$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

Leading subjet $z_r$ in pp collisions for $r=0.1$ $80<p_{\mathrm{T}}^{\mathrm{ch\;jet}}<120$ GeV/$c$. For the "trkeff" and "generator" systematic uncertainty sources, the signed systematic uncertainty breakdowns ($\pm$ vs. $\mp$), denote correlation across bins (both within this table, and across tables). For the remaining sources ("unfolding") no correlation information is specified ($\pm$ is always used).

More…

First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

21 data tables

Raw primary antihelium3-to-helium3 ratio as a function of the momentum p_primary.

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with default sigma_inel(3Hebar).

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with sigma_inel(3Hebar)x0.5.

More…