Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope

The ANTARES collaboration Adrian-Martinez, S. ; Albert, A. ; Andre, M. ; et al.
Phys.Lett. B759 (2016) 69-74, 2016.
Inspire Record 1426493 DOI 10.17182/hepdata.77062

A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP+WIMP→bb¯,W+W− and τ+τ− .

3 data tables

Upper limit on neutrino flux coming from the Sun for different annihiliation channels and WIMP masses. Limits for the $W^+W^-$ channel cannot be produced for WIMP masses below the mass of the $W$ boson.

Upper limit on spin-dependent cross-section for different annihiliation channels and WIMP masses. Limits for the $W^+W^-$ channel cannot be produced for WIMP masses below the mass of the $W$ boson.

Upper limit on spin-independent cross-section for different annihiliation channels and WIMP masses. Limits for the $W^+W^-$ channel cannot be produced for WIMP masses below the mass of the $W$ boson.