Measurement of exclusive pion pair production in proton-proton collisions at $\sqrt{s}=$7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 627, 2023.
Inspire Record 2606496 DOI 10.17182/hepdata.131222

The exclusive production of pion pairs in the process $pp\to pp\pi^+\pi^-$ has been measured at $\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC, using 80 $\mu$b$^{-1}$ of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion-pion invariant mass. Cross section values of $4.8 \pm 1.0 \text{(stat.)} + {}^{+0.3}_{-0.2} \text{(syst.)}\mu$b and $9 \pm 6 \text{(stat.)} + {}^{+2}_{-2}\text{(syst.)}\mu$b are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

154 data tables

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.

More…

Measurement of the $CP$-violating phase $\phi_s$ in $B^0_s \to J/\psi\phi$ decays in ATLAS at 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 342, 2021.
Inspire Record 1776624 DOI 10.17182/hepdata.103066

A measurement of the $B^0_s \to J/\psi\phi$ decay parameters using 80.5 $\mathrm{fb}^{-1}$ of integrated luminosity collected with the ATLAS detector from 13 TeV proton-proton collisions at the LHC is presented. The measured parameters include the $CP$-violating phase $\phi_s$, the width difference $\Delta\Gamma_{s}$ between the $B^0_s$ meson mass eigenstates and the average decay width $\Gamma_{s}$. The values measured for the physical parameters are combined with those from 19.2 $\mathrm{fb}^{-1}$ of 7 TeV and 8 TeV data, leading to the following: \begin{eqnarray*} \phi_s & = & -0.087\phantom{0} \pm 0.036\phantom{0} ~\mathrm{(stat.)} \pm 0.021\phantom{0} ~\mathrm{(syst.)~rad} \\ \Delta\Gamma_{s} & = & \phantom{-}0.0657 \pm 0.0043 ~\mathrm{(stat.)} \pm 0.0037 ~\mathrm{(syst.)~ps}^{-1} \\ \Gamma_{s} & = & \phantom{-}0.6703 \pm 0.0014 ~\mathrm{(stat.)} \pm 0.0018 ~\mathrm{(syst.)~ps}^{-1} \\ \end{eqnarray*} Results for $\phi_s$ and $\Delta\Gamma_{s}$ are also presented as 68% confidence level contours in the $\phi_s$-$\Delta\Gamma_{s}$ plane. Furthermore, the transversity amplitudes and corresponding strong phases are measured. $\phi_s$ and $\Delta\Gamma_{s}$ measurements are in agreement with the Standard Model predictions.

9 data tables

Fitted values for the physical parameters of interest with their statistical and systematic uncertainties, for the result of solution (a).

Fitted values for the physical parameters of interest with their statistical and systematic uncertainties, for the result of solution (b).

Fit correlations between the physical parameters of interest, obtained from the fit for solution (a).

More…

Measurement of $K_S^0$ and $\Lambda^0$ production in $t \bar{t}$ dileptonic events in $pp$ collisions at $\sqrt{s} =$ 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 1017, 2019.
Inspire Record 1746286 DOI 10.17182/hepdata.91243

Measurements of $K_S^0$ and $\Lambda^0$ production in $t\bar{t}$ final states have been performed. They are based on a data sample with integrated luminosity of 4.6 $\mathrm{fb}^{-1}$ from proton-proton collisions at a centre-of-mass energy of 7 TeV, collected in 2011 with the ATLAS detector at the Large Hadron Collider. Neutral strange particles are separated into three classes, depending on whether they are contained in a jet, with or without a $b$-tag, or not associated with a selected jet. The aim is to look for differences in their main kinematic distributions. A comparison of data with several Monte Carlo simulations using different hadronisation and fragmentation schemes, colour reconnection models and different tunes for the underlying event has been made. The production of neutral strange particles in $t\bar{t}$ dileptonic events is found to be well described by current Monte Carlo models for $K_S^0$ and $\Lambda^0$ production within jets, but not for those produced outside jets.

22 data tables

The transverse momentum ($p_{T}$) distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking inefficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

The energy fraction ($x_{K}$) distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking ineficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

The energy distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking ineficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

More…

Measurements of electroweak $Wjj$ production and constraints on anomalous gauge couplings with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 474, 2017.
Inspire Record 1517194 DOI 10.17182/hepdata.76505

Measurements of the electroweak production of a $W$ boson in association with two jets at high dijet invariant mass are performed using $\sqrt{s} = 7$ and $8$ TeV proton-proton collision data produced by the Large Hadron Collider, corresponding respectively to 4.7 and 20.2 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector. The measurements are sensitive to the production of a $W$ boson via a triple-gauge-boson vertex and include both the fiducial and differential cross sections of the electroweak process.

149 data tables

Integrated fiducial cross-sections for QCD+EW and EW-only $Wjj$ production in the inclusive region with $m_{jj} > 1.5$ TeV.

Integrated fiducial cross-sections for QCD+EW $Wjj$ production in the forward-lepton region.

Integrated fiducial cross-sections for QCD+EW and EW-only $Wjj$ production in the signal region with $m_{jj} > 1.0$ TeV.

More…

Measurements of top-quark pair to $Z$-boson cross-section ratios at $\sqrt s = 13, 8, 7$TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 02 (2017) 117, 2017.
Inspire Record 1502921 DOI 10.17182/hepdata.75536

Ratios of top-quark pair to $Z$-boson cross sections measured from proton--proton collisions at the LHC centre-of-mass energies of $\sqrt s=13$TeV, 8TeV, and 7TeV are presented by the ATLAS Collaboration. Single ratios, at a given $\sqrt s$ for the two processes and at different $\sqrt s$ for each process, as well as double ratios of the two processes at different $\sqrt s$, are evaluated. The ratios are constructed using previously published ATLAS measurements of the $t\overline{t}$ and $Z$-boson production cross sections, corrected to a common phase space where required, and a new analysis of $Z \rightarrow \ell^+ \ell^-$ where $\ell=e,\mu$ at $\sqrt s=13$TeV performed with data collected in 2015 with an integrated luminosity of $3.2$fb$^{-1}$. Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the $Z\rightarrow e^+e^-$ and the $Z\rightarrow \mu^+ \mu^-$ channels for each $\sqrt s$ value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-$x$ values near 0.1 and the light-quark sea for $x<0.02$.

11 data tables

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state at 13TeV.

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state at 13TeV.

Breakdown of systematic uncertainties in percent for the measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state at 13TeV.

More…

Precision measurement and interpretation of inclusive $W^+$, $W^-$ and $Z/\gamma^*$ production cross sections with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 367, 2017.
Inspire Record 1502620 DOI 10.17182/hepdata.76541

High-precision measurements by the ATLAS Collaboration are presented of inclusive $W^+\to\ell^+\nu$, $W^-\to\ell^-\bar{\nu}$ and $Z/\gamma^*\to\ell\ell$ ($\ell=e,\mu$) Drell-Yan production cross sections at the LHC. The data were collected in proton-proton collisions at $\sqrt{s} = 7$ TeV with an integrated luminosity of 4.6 fb$^{-1}$. Differential $W^+$ and $W^-$ cross sections are measured in a lepton pseudorapidity range $|\eta_{\ell}| = 2.5$. Differential $Z/\gamma^*$ cross sections are measured as a function of the absolute dilepton rapidity, for $|y_{\ell\ell}| < 3.6$, for three intervals of dilepton mass, $m_{\ell\ell}$, extending from 46 to 150 GeV. The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive $e^{\pm}p$ scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element $|V_{cs}|$ is also provided.

59 data tables

Fiducial cross sections times branching ratios for $W^+$, $W^-$, central and forward $Z/\gamma^*$ ($m_{ee} = 66-116$ GeV) production in the electron decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the central electron pseudorapidity is restricted to be $|\eta|<2.47$ and excludes $1.37<|\eta|<1.52$, and the forward electron pseudorapidity excludes the region $3.16<|\eta|<3.35$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.

Fiducial cross sections times branching ratios for $W^+$, $W^-$ and $Z/\gamma^*$ ($m_{\mu\mu} = 66-116$ GeV) production in the muon decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the muon pseudorapidity is restricted to be $|\eta|<2.4$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.

Integrated fiducial cross sections times leptonic branching ratios in the electron and muon channels and their combination with statistical and systematic uncertainties, for $W^+$, $W^-$, their sum and the $Z/\gamma^*$ process measured at $\sqrt{s}=7$ TeV. The $Z/\gamma^*$ cross section is defined for the dilepton mass window $m_{\ell\ell} = 66 - 116$ GeV. The common fiducial regions are defined in Section 2.3. The uncertainties denote the statistical (stat), the experimental systematic (syst), and the luminosity (lumi) contributions.

More…

Study of hard double-parton scattering in four-jet events in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2016) 110, 2016.
Inspire Record 1479760 DOI 10.17182/hepdata.73908

Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb$^{-1}$, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum $p_{\mathrm{T}} \geq 20$ GeV and pseudorapidity $\eta \leq 4.4$, and at least one having $p_{\mathrm{T}} \geq 42.5$ GeV, the contribution of hard double-parton scattering is estimated to be $f_{\mathrm{DPS}} = 0.092 ^{+0.005}_{-0.011} (\mathrm{stat.}) ^{+0.033}_{-0.037} (\mathrm{syst.})$. After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective overlap area between the interacting protons, $\sigma_{\mathrm{eff}}$, was determined to be $\sigma_{\mathrm{eff}} = 14.9 ^{+1.2}_{-1.0} (\mathrm{stat.}) ^{+5.1}_{-3.8} (\mathrm{syst.})$ mb. This result is consistent within the quoted uncertainties with previous measurements of $\sigma_{\mathrm{eff}}$, performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to $21^{+7}_{-6}$% of the total inelastic cross-section measured at $\sqrt{s} = 7$ TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.

21 data tables

Normalized distribution of the variable $\Delta^{p_{\mathrm{T}}}_{34}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

Normalized distribution of the variable $\Delta\phi_{34}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

Normalized distribution of the variable $\Delta^{p_{\mathrm{T}}}_{12}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

More…

Measurement of the $b\overline{b}$ dijet cross section in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 670, 2016.
Inspire Record 1478355 DOI 10.17182/hepdata.75316

The dijet production cross section for jets containing a $b$-hadron ($b$-jets) has been measured in proton-proton collisions with a centre-of-mass energy of $\sqrt{s} = 7$ TeV, using the ATLAS detector at the LHC. The data used correspond to an integrated luminosity of 4.2 fb$^{-1}$. The cross section is measured for events with two identified $b$-jets with a transverse momentum $p_T > 20$ GeV and a minimum separation in the $\eta$-$\phi$ plane of $\Delta R = 0.4$. At least one of the jets in the event is required to have $p_T > 270$ GeV. The cross section is measured differentially as a function of dijet invariant mass, dijet transverse momentum, boost of the dijet system, and the rapidity difference, azimuthal angle and angular distance between the $b$-jets. The results are compared to different predictions of leading order and next-to-leading order perturbative quantum chromodynamics matrix elements supplemented with models for parton-showers and hadronization.

6 data tables

Results for the m_bb distribution. Statistical and systematic uncertainties are quoted.

Results for the DeltaPhi distribution. Statistical and systematic uncertainties are quoted.

Results for the y* distribution. Statistical and systematic uncertainties are quoted.

More…

Measurement of top quark pair differential cross-sections in the dilepton channel in $pp$ collisions at $\sqrt{s}$ = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 092003, 2016.
Inspire Record 1477814 DOI 10.17182/hepdata.75323

Measurements of normalized differential cross-sections of top quark pair ($t\bar t$) production are presented as a function of the mass, the transverse momentum and the rapidity of the $t\bar t$ system in proton-proton collisions at center-of-mass energies of $\sqrt{s}$ = 7 TeV and 8 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$ at 7 TeV and 20.2 fb$^{-1}$ at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a $b$-hadron. The measured distributions are corrected for detector effects and selection efficiency to cross-sections at the parton level. The differential cross-sections are compared with different Monte Carlo generators and theoretical calculations of $t\bar t$ production. The results are consistent with the majority of predictions in a wide kinematic range.

36 data tables

Parton-level normalized $t\bar t$ differential cross-sections for $t\bar t$ system mass $m_{t\bar t}$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

Parton-level normalized $t\bar t$ differential cross-sections for the $t\bar t$ system transverse momentum $p_{T, t\bar t}$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

Parton-level normalized $t\bar t$ differential cross-sections for the $t\bar t$ system absolute rapidity $|y_{t\bar t}|$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

More…

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

44 data tables

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.

More…

Measurement of event-shape observables in $Z \to \ell^{+} \ell^{-}$ events in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 375, 2016.
Inspire Record 1424838 DOI 10.17182/hepdata.74004

Event-shape observables measured using charged particles in inclusive $Z$-boson events are presented, using the electron and muon decay modes of the $Z$ bosons. The measurements are based on an integrated luminosity of $1.1 {\rm fb}^{-1}$ of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy $\sqrt{s}=7$ TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the $Z$-boson decay, are measured in different ranges of transverse momentum of the $Z$ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and $\mathcal{F}$-parameter, which are in particular sensitive to properties of the underlying event at small values of the $Z$-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high $Z$-boson transverse momenta than at low $Z$-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.

60 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the differential cross-sections of prompt and non-prompt production of $J/\psi$ and $\psi(2\mathrm{S})$ in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 283, 2016.
Inspire Record 1409298 DOI 10.17182/hepdata.72721

The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.

40 data tables

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 8 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

More…

Measurement of $D^{*\pm}$, $D^\pm$ and $D_s^\pm$ meson production cross sections in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 907 (2016) 717-763, 2016.
Inspire Record 1408878 DOI 10.17182/hepdata.77020

The production of $D^{*\pm}$, $D^\pm$ and $D_s^\pm$ charmed mesons has been measured with the ATLAS detector in $pp$ collisions at $\sqrt{s}=7$ TeV at the LHC, using data corresponding to an integrated luminosity of $280\,$nb$^{-1}$. The charmed mesons have been reconstructed in the range of transverse momentum $3.5<p_{\rm T}(D)<100$ GeV and pseudorapidity $|\eta(D)|<2.1$. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for $D^{*\pm}$ and $D^\pm$ production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible $D$ cross sections and an extrapolation to the full kinematic phase space, the strangeness-suppression factor in charm fragmentation, the fraction of charged non-strange $D$ mesons produced in a vector state, and the total cross section of charm production at $\sqrt{s}=7$ TeV were derived.

4 data tables

The visible low-$p_T$, $3.5<p_T(D)<20\rm{\ GeV}$, and high-$p_T$, $20<p_T(D)<100\rm{\ GeV}$, cross sections of $D^{*\pm}$, $D^\pm$ and $D^\pm_s$ production with $|\eta|<2.1$. The data uncertainties are the total uncertainties obtained as sums in quadrature of the statistical, systematic, luminosity and branching-fraction uncertainties.

The measured differential cross sections $\rm{d}\sigma/\rm{d}p_T$ of $D^{*\pm}$ and $D^\pm$ production with $|\eta|<2.1$. The first and second errors are the statistical and systematic uncertainties, respectively. The systematic uncertainties corresponding to the tracking ($\delta_2$) uncertainties (Table 2 of the paper) are strongly correlated. The fully correlated uncertainties linked with the luminosity measurement ($3.5\%$) and branching fractions ($1.5\%$ and $2.1\%$ for $D^{*\pm}$ and $D^\pm$, respectively) are not shown.

The measured differential cross sections $\rm{d}\sigma/\rm{d}|\eta|$ of $D^{*\pm}$ and $D^\pm$ production with $3.5<p_T<20\,$GeV. The first and second errors are the statistical and systematic uncertainties, respectively. The systematic uncertainty fractions corresponding to the tracking ($\delta_2$) uncertainties (Table 2 of the paper) are strongly correlated. The fully correlated uncertainties linked with the luminosity measurement ($3.5\%$) and branching fractions ($1.5\%$ and $2.1\%$ for $D^{*\pm}$ and $D^\pm$, respectively) are not shown.

More…

Dijet production in $\sqrt{s}=7$ TeV $pp$ collisions with large rapidity gaps at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 754 (2016) 214-234, 2016.
Inspire Record 1402356 DOI 10.17182/hepdata.70762

A $6.8 \ {\rm nb^{-1}}$ sample of $pp$ collision data collected under low-luminosity conditions at $\sqrt{s} = 7$ TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with $p_\mathrm{T} > 20$ GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in $\Delta\eta^F$, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, $\tilde{\xi}$, of the fractional momentum loss of the proton assuming single diffractive dissociation ($pp \rightarrow pX$). Model comparisons indicate a dominant non-diffractive contribution up to moderately large $\Delta\eta^F$ and small $\tilde{\xi}$, with a diffractive contribution which is significant at the highest $\Delta\eta^F$ and the lowest $\tilde{\xi}$. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.

6 data tables

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.4.

The cross section differential in the fraction of the proton four-momentum carried by the Pomeron, LOG10(C=XI), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

More…

Measurement of the correlations between the polar angles of leptons from top quark decays in the helicity basis at $\sqrt{s}=7$TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 012002, 2016.
Inspire Record 1400803 DOI 10.17182/hepdata.76911

A measurement of the correlations between the polar angles of leptons from the decay of pair-produced $t$ and $\bar{t}$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6fb$^{-1}$ at a center-of-mass energy of $\sqrt{s}=7$TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles $\theta_1$ and $\theta_2$ between the charged leptons and the direction of motion of the parent quarks in the $t\bar{t}$ rest frame are sensitive to the spin information, and the distribution of {\mbox{$\cos\theta_1\cdot\cos\theta_2$}} is sensitive to the spin correlation between the $t$ and $\bar{t}$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.

2 data tables

The numerical summary of the unfolded $\cos\theta_1\cdot\cos\theta_2$ distribution, with statistical and systematic uncertainties.

The correlation factors for the statistical uncertainties between any two bins of the unfolded distribution.


Measurement of exclusive $\gamma\gamma\rightarrow \ell^+\ell^-$ production in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 749 (2015) 242-261, 2015.
Inspire Record 1377585 DOI 10.17182/hepdata.69286

This Letter reports a measurement of the exclusive $\gamma\gamma\rightarrow \ell^+\ell^- (\ell=e, \mu)$ cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of $4.6$ fb$^{-1}$. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be $\sigma_{\gamma\gamma\rightarrow e^+e^-}^{\mathrm{excl.}} = 0.428 \pm 0.035 (\mathrm{stat.}) \pm 0.018 (\mathrm{syst.})$ pb for a phase-space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum $p_\mathrm{T}>12$ GeV and pseudorapidity $|\eta|<2.4$. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum $p_\mathrm{T}>10$ GeV and pseudorapidity $|\eta|<2.4$, the cross-section is determined to be $\sigma_{\gamma\gamma\rightarrow \mu^+\mu^- }^{\mathrm{excl.}} = 0.628 \pm 0.032 (\mathrm{stat.}) \pm 0.021 (\mathrm{syst.})$ pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.

10 data tables

Fiducial cross-section SIG for the exclusive e+ e- and mu+ mu- production.

Ratios of the number of observed to the number of expected events based on the MC predictions (R) for the exclusive e+ e- and mu+ mu- production.

Detector response matrix (PROB) for the acoplanarity variable (ACO) for e+ e- channel (empty bins are not reported).

More…

Two-particle Bose-Einstein correlations in $pp$ collisions at $\mathbf {\sqrt{s} =}$ 0.9 and 7 TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 466, 2015.
Inspire Record 1346844 DOI 10.17182/hepdata.70016

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

24 data tables

Systematic uncertainties on $\lambda$ and $R$ for the exponential fit of the two-particle double-ratio correlation function $R_{2}(Q)$ in the full kinematic region at $\sqrt{s} = 0.9$ and $7\ TeV$ for minimum-bias and high-multiplicity (HM) events, $n_{ch} \ge 2$ and $n_{ch} \ge 150$, respectively.

Results of fitting the multiplicity, $n_{ch}$, dependence of the BEC parameters $R$ and $\lambda$ with different functional forms for $\sqrt{s} = 0.9$ and $7\ TeV$. The $n_{ch}$ fit of $R(n_{ch})$ is applied to $7\ TeV$ minimum-bias events at $n_{ch} \le 55$ and to $0.9\ TeV$ minimum-bias events. The constant fit of $R(n_{ch} )$ is applied to $7\ TeV$ minimum-bias events for $n_{ch} > 55$ and to $7\ TeV$ high-multiplicity events. The exponential fit of $\lambda(n_{ch})$ is applied to $7\ TeV$ minimum-bias and high-multiplicity events.The error represent the quadratic sum of the statistical and systematic uncertainties.

Results of fitting the transverse momentum of the pair, $k_{T}$, dependence of the BEC parameters $R$ and $\lambda$ with the exponential fitting function for $\sqrt{s} = 0.9$ and $7\ TeV$. The error represent the quadratic sum of the statistical and systematic uncertainties.

More…

Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at $\sqrt{s}=7$ TeV in the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 06 (2015) 100, 2015.
Inspire Record 1345452 DOI 10.17182/hepdata.77064

Various differential cross-sections are measured in top-quark pair ($t\bar{t}$) events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of $4.6$ fb$^{-1}$. The differential cross-sections are presented in terms of kinematic variables, such as momentum, rapidity and invariant mass, of a top-quark proxyreferred to as the pseudo-top-quark as well as the pseudo-top-quark pair system. The dependence of the measurement on theoretical models is minimal. The measurements are performed on $t\bar{t}$ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a $b$-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the $W$ boson produced by the top-quark decay in events with a single charged lepton. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.

21 data tables

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$in the muon channel. The results shown in this table are one of the inputs for the combined results.

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$ in the electron channel. The results shown in this table are one of the inputs for the combined results.

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $|y(\hat{t}_{\mathrm{h}})|$ in the muon channel. The results shown in this table are one of the inputs for the combined results.

More…

Measurement of the transverse polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s}=7$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 91 (2015) 032004, 2015.
Inspire Record 1332748 DOI 10.17182/hepdata.66547

The transverse polarization of $\Lambda$ and $\bar\Lambda$ hyperons produced in proton-proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 $\mu$b$^{-1}$ of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman $x_{\rm F}$ from $5\times 10^{-5}$ to 0.01 and transverse momentum $p_{\rm T}$ from 0.8 to 15 GeV is $-0.010 \pm 0.005({\rm stat}) \pm 0.004({\rm syst})$ for $\Lambda$ and $0.002 \pm 0.006({\rm stat}) \pm 0.004({\rm syst})$ for $\bar\Lambda$. It is also measured as a function of $x_{\rm F}$ and $p_{\rm T}$, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the $x_{\rm F}$ range covered by this mesurement.

5 data tables

Transverse polarization POL of LAMBDA and LAMBDABAR hyperons averaged over PT and XF.

Transverse polarization POL of LAMBDA and LAMBDABAR hyperons as a function of XF.

Transverse polarization POL of LAMBDA and LAMBDABAR hyperons as a function of PT.

More…

Measurement of the inclusive jet cross-section in proton-proton collisions at $\sqrt{s}=7$ TeV using 4.5 fb$^{-1}$ of data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 02 (2015) 153, 2015.
Inspire Record 1325553 DOI 10.17182/hepdata.69343

The inclusive jet cross-section is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-$k_t$ algorithm with radius parameter values of 0.4 and 0.6. The double-differential cross-sections are presented as a function of the jet transverse momentum and the jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV. Next-to-leading-order QCD calculations corrected for non-perturbative effects and electroweak effects, as well as Monte Carlo simulations with next-to-leading-order matrix elements interfaced to parton showering, are compared to the measured cross-sections. A quantitative comparison of the measured cross-sections to the QCD calculations using several sets of parton distribution functions is performed.

12 data tables

Measured double-differential inclusive-jet cross section for the range 0.0 <= |y| < 0.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 0.5 <= |y| < 1.0 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 1.0 <= |y| < 1.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

More…

Measurement of the $WW+WZ$ cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum, and two jets with the ATLAS detector at $\sqrt{\rm{s}} = 7$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 01 (2015) 049, 2015.
Inspire Record 1324374 DOI 10.17182/hepdata.66704

The production of a $W$ boson decaying to $e\nu$ or $\mu\nu$ in association with a $W$ or $Z$ boson decaying to two jets is studied using $4.6 \mathrm{fb}^{-1}$ of proton--proton collision data at $\sqrt{\rm{s}} = 7$ TeV recorded with the ATLAS detector at the LHC. The combined $WW+WZ$ cross section is measured with a significance of 3.4$\sigma$ and is found to be $68 \pm 7 \ \mathrm{(stat.)} \pm 19 \ \mathrm{(syst.)} \ pb$, in agreement with the Standard Model expectation of $61.1 \pm 2.2 \ \mathrm{pb}$. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.

1 data table

The total and fiducial cross sections for the production of W(LEPTON NU) W(JET JET) or W(LEPTON NU) Z(JET JET). The cross sections are the sum of the WW and WZ processes.


Version 2
Measurements of the W production cross sections in association with jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 82, 2015.
Inspire Record 1319490 DOI 10.17182/hepdata.66683

This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.

102 data tables

Distribution of inclusive jet multiplicity.

Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.

Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.

More…

Measurement of Higgs boson production in the diphoton decay channel in $pp$ collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112015, 2014.
Inspire Record 1312978 DOI 10.17182/hepdata.69473

A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 5.4 fb$^{-1}$ of proton-proton collisions data at $\sqrt{s}=7$ TeV and 20.3 fb$^{-1}$ at $\sqrt{s}=8$ TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be $\mu = 1.17 \pm 0.27$ at the value of the Higgs boson mass measured by ATLAS, $m_{H}$ = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of $m_{H}$. They are found to be $\mu_{\mathrm{ggF}} = 1.32 \pm 0.38$, $\mu_{\mathrm{VBF}} = 0.8 \pm 0.7$, $\mu_{{WH}} = 1.0 \pm 1.6 $, $\mu_{{ZH}} = 0.1 ^{+3.7}_{-0.1} $, $\mu_{{t\bar{t}H}} = 1.6 ^{+2.7}_{-1.8} $, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a $W$ or $Z$ boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

3 data tables

The signal strength for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma as measured in the individual analysis categories, and the combined signal strength, for the combination of the 7 TeV and 8 TeV data. The VH dilepton category is not shown because with only two events in the combined sample, the fit results are not meaningful.

The signal strength for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma as measured in groups of categories sensitive to individual production modes, and the combined signal strength, for the combination of the 7 TeV and 8 TeV data.

Measured signal strengths, for a Higgs boson of mass mH = 125.4 GeV decaying via H->gammagamma, of the different Higgs boson production modes and the combined signal strength mu obtained with the combination of the 7 TeV and 8 TeV data.