Measurements of electroweak $Wjj$ production and constraints on anomalous gauge couplings with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 474, 2017.
Inspire Record 1517194 DOI 10.17182/hepdata.76505

Measurements of the electroweak production of a $W$ boson in association with two jets at high dijet invariant mass are performed using $\sqrt{s} = 7$ and $8$ TeV proton-proton collision data produced by the Large Hadron Collider, corresponding respectively to 4.7 and 20.2 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector. The measurements are sensitive to the production of a $W$ boson via a triple-gauge-boson vertex and include both the fiducial and differential cross sections of the electroweak process.

149 data tables

Integrated fiducial cross-sections for QCD+EW and EW-only $Wjj$ production in the inclusive region with $m_{jj} > 1.5$ TeV.

Integrated fiducial cross-sections for QCD+EW $Wjj$ production in the forward-lepton region.

Integrated fiducial cross-sections for QCD+EW and EW-only $Wjj$ production in the signal region with $m_{jj} > 1.0$ TeV.

More…

Version 2
Measurements of the production cross section of a $Z$ boson in association with jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 361, 2017.
Inspire Record 1514251 DOI 10.17182/hepdata.76542

Measurements of the production cross section of a $Z$ boson in association with jets in proton-proton collisions at $\sqrt{s} = 13$ TeV are presented, using data corresponding to an integrated luminosity of 3.16 fb$^{-1}$ collected by the ATLAS experiment at the CERN Large Hadron Collider in 2015. Inclusive and differential cross sections are measured for events containing a $Z$ boson decaying to electrons or muons and produced in association with up to seven jets with $p_T > 30$ GeV and $|y| <2.5$. Predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements for up to two additional partons interfaced with parton shower and fixed-order predictions at next-to-leading order and next-to-next-to-leading order are compared with the measured cross sections. Good agreement within the uncertainties is observed for most of the modelled quantities, in particular with the generators which use next-to-leading-order matrix elements and the more recent next-to-next-to-leading-order fixed-order predictions.

168 data tables

Measured fiducial cross sections for successive exclusive jet multiplicities in the electron channel. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial cross sections for successive exclusive jet multiplicities in the electron channel. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial cross sections for successive exclusive jet multiplicities in the muon channel. The statistical, systematic, and luminosity uncertainties are given.

More…

Measurement of the $W^+W^-$ production cross section in $pp$ collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 773 (2017) 354-374, 2017.
Inspire Record 1513473 DOI 10.17182/hepdata.79847

The production of opposite-charge $W$-boson pairs in proton-proton collisions at $\sqrt{s}$ = 13 TeV is measured using data corresponding to 3.16 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the CERN Large Hadron Collider in 2015. Candidate $W$-boson pairs are selected by identifying their leptonic decays into an electron, a muon and neutrinos. Events with reconstructed jets are not included in the candidate event sample. The cross-section measurement is performed in a fiducial phase space close to the experimental acceptance and is compared to theoretical predictions. Agreement is found between the measurement and the most accurate calculations available.

5 data tables

The measured fiducial cross section P P --> WW --> $e^\pm \mu^\mp$.

Detailed breakdown of the systematic uncertainties in the fiducial cross-section measurement as a result of the simultaneous fit to signal and control regions. Summarised in Table 4 of the paper.

Systematic uncertainty correlation matrix for the fiducial cross section.

More…

Version 2
Fiducial, total and differential cross-section measurements of $t$-channel single top-quark production in $pp$ collisions at 8 TeV using data collected by the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 531, 2017.
Inspire Record 1512776 DOI 10.17182/hepdata.82544

Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

108 data tables

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Definition of the fiducial phase space.

More…

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Nature Phys. 13 (2017) 852-858, 2017.
Inspire Record 1512305 DOI 10.17182/hepdata.77761

Light-by-light scattering ($\gamma\gamma\rightarrow\gamma\gamma$) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480 $\mu$b$^{-1}$ of Pb+Pb collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, the ATLAS Collaboration reports evidence for the $\gamma\gamma\rightarrow\gamma\gamma$ reaction. A total of 13 candidate events are observed with an expected background of 2.6$\pm$0.7 events. After background subtraction and analysis corrections, the fiducial cross section of the process $\textrm{Pb+Pb}\,(\gamma\gamma)\rightarrow \textrm{Pb}^{(\ast)}\textrm{+}\textrm{Pb}^{(\ast)}\,\gamma\gamma$, for photon transverse energy $E_{\mathrm{T}}>$3 GeV, photon absolute pseudorapidity $|\eta|<$2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 $\pm$ 24 (stat.) $\pm$ 17 (syst.) nb, which is in agreement with Standard Model predictions.

3 data tables

Detector-level diphoton invariant mass distribution

Detector-level diphoton acoplanarity distribution

The measured total fiducial cross section


Measurement of internal structure of jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 2.76$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 379, 2017.
Inspire Record 1511869 DOI 10.17182/hepdata.77789

The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb$^{-1}$ of Pb+Pb data and 4.0 pb$^{-1}$ of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet $p_{\mathrm{T}}$ and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.

81 data tables

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 2.1.

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 0.3.

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity 0.3 < |y| < 0.8.

More…

Measurement of the cross section for inclusive isolated-photon production in $pp$ collisions at $\sqrt s=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 770 (2017) 473-493, 2017.
Inspire Record 1510441 DOI 10.17182/hepdata.79798

Inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb$^{-1}$. The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.

8 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<1.37$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $1.56<|\eta^{\gamma}|<1.81$.

More…

Measurement of charged-particle distributions sensitive to the underlying event in $\sqrt{s} = 13$ TeV proton-proton collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2017) 157, 2017.
Inspire Record 1509919 DOI 10.17182/hepdata.76730

We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV, in low-luminosity Large Hadron Collider fills corresponding to an integrated luminosity of 1.6 nb$^{-1}$. The distributions were constructed using charged particles with absolute pseudorapidity less than 2.5 and with transverse momentum greater than 500 MeV, in events with at least one such charged particle with transverse momentum above 1 GeV. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The results have been corrected for detector effects and are compared to the predictions of various Monte Carlo event generators, experimentally establishing the level of underlying-event activity at LHC Run 2 energies and providing inputs for the development of event generator modelling. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%.

32 data tables

Unit-normalised distribution of the transverse momentum of the leading charged-particle $p_\mathrm{T}^\mathrm{lead}$ > 1 GeV.

Mean values of charged-particle multiplicity $n_\mathrm{ch}$ as a function of leading charged-particle $p_\mathrm{T}$ in the trans-min azimuthal region.

Mean values of charged-particle multiplicity $n_\mathrm{ch}$ as a function of leading charged-particle $p_\mathrm{T}$ in the trans-max azimuthal region.

More…

Measurements of top-quark pair to $Z$-boson cross-section ratios at $\sqrt s = 13, 8, 7$TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 02 (2017) 117, 2017.
Inspire Record 1502921 DOI 10.17182/hepdata.75536

Ratios of top-quark pair to $Z$-boson cross sections measured from proton--proton collisions at the LHC centre-of-mass energies of $\sqrt s=13$TeV, 8TeV, and 7TeV are presented by the ATLAS Collaboration. Single ratios, at a given $\sqrt s$ for the two processes and at different $\sqrt s$ for each process, as well as double ratios of the two processes at different $\sqrt s$, are evaluated. The ratios are constructed using previously published ATLAS measurements of the $t\overline{t}$ and $Z$-boson production cross sections, corrected to a common phase space where required, and a new analysis of $Z \rightarrow \ell^+ \ell^-$ where $\ell=e,\mu$ at $\sqrt s=13$TeV performed with data collected in 2015 with an integrated luminosity of $3.2$fb$^{-1}$. Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the $Z\rightarrow e^+e^-$ and the $Z\rightarrow \mu^+ \mu^-$ channels for each $\sqrt s$ value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-$x$ values near 0.1 and the light-quark sea for $x<0.02$.

11 data tables

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state at 13TeV.

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state at 13TeV.

Breakdown of systematic uncertainties in percent for the measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state at 13TeV.

More…

Measurement of the prompt $J/\psi$ pair production cross-section in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 76, 2017.
Inspire Record 1502618 DOI 10.17182/hepdata.76840

The production of two prompt $J/\psi$ mesons, each with transverse momenta $p_{\mathrm{T}}>8.5$ GeV and rapidity $|y| < 2.1$, is studied using a sample of proton-proton collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 11.4 fb$^{-1}$ collected in 2012 with the ATLAS detector at the LHC. The differential cross-section, assuming unpolarised $J/\psi$ production, is measured as a function of the transverse momentum of the lower-$p_{\mathrm{T}}$ $J/\psi$ meson, di-$J/\psi$ $p_{\mathrm{T}}$ and mass, the difference in rapidity between the two $J/\psi$ mesons, and the azimuthal angle between the two $J/\psi$ mesons. The fraction of prompt pair events due to double parton scattering is determined by studying kinematic correlations between the two $J/\psi$ mesons. The total and double parton scattering cross-sections are compared with predictions. The effective cross-section of double parton scattering is measured to be $\sigma_{\mathrm{eff}} = 6.3 \pm 1.6 \mathrm{(stat)} \pm 1.0 \mathrm{(syst)}$ mb.

16 data tables

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the forward rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the di-$J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

More…

Precision measurement and interpretation of inclusive $W^+$, $W^-$ and $Z/\gamma^*$ production cross sections with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 367, 2017.
Inspire Record 1502620 DOI 10.17182/hepdata.76541

High-precision measurements by the ATLAS Collaboration are presented of inclusive $W^+\to\ell^+\nu$, $W^-\to\ell^-\bar{\nu}$ and $Z/\gamma^*\to\ell\ell$ ($\ell=e,\mu$) Drell-Yan production cross sections at the LHC. The data were collected in proton-proton collisions at $\sqrt{s} = 7$ TeV with an integrated luminosity of 4.6 fb$^{-1}$. Differential $W^+$ and $W^-$ cross sections are measured in a lepton pseudorapidity range $|\eta_{\ell}| = 2.5$. Differential $Z/\gamma^*$ cross sections are measured as a function of the absolute dilepton rapidity, for $|y_{\ell\ell}| < 3.6$, for three intervals of dilepton mass, $m_{\ell\ell}$, extending from 46 to 150 GeV. The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive $e^{\pm}p$ scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element $|V_{cs}|$ is also provided.

59 data tables

Fiducial cross sections times branching ratios for $W^+$, $W^-$, central and forward $Z/\gamma^*$ ($m_{ee} = 66-116$ GeV) production in the electron decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the central electron pseudorapidity is restricted to be $|\eta|<2.47$ and excludes $1.37<|\eta|<1.52$, and the forward electron pseudorapidity excludes the region $3.16<|\eta|<3.35$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.

Fiducial cross sections times branching ratios for $W^+$, $W^-$ and $Z/\gamma^*$ ($m_{\mu\mu} = 66-116$ GeV) production in the muon decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the muon pseudorapidity is restricted to be $|\eta|<2.4$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.

Integrated fiducial cross sections times leptonic branching ratios in the electron and muon channels and their combination with statistical and systematic uncertainties, for $W^+$, $W^-$, their sum and the $Z/\gamma^*$ process measured at $\sqrt{s}=7$ TeV. The $Z/\gamma^*$ cross section is defined for the dilepton mass window $m_{\ell\ell} = 66 - 116$ GeV. The common fiducial regions are defined in Section 2.3. The uncertainties denote the statistical (stat), the experimental systematic (syst), and the luminosity (lumi) contributions.

More…

High-$E_{\rm T}$ isolated-photon plus jets production in $pp$ collisions at $\sqrt s=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Nucl.Phys.B 918 (2017) 257-316, 2017.
Inspire Record 1499475 DOI 10.17182/hepdata.79948

The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

35 data tables

Measured cross sections for isolated-photon plus 1jet production as a function of $E_{\rm T}^{\gamma}$.

Measured cross sections for isolated-photon plus 1jet production as a function of $p_{\rm T}^{\rm jet1}$.

Measured cross sections for isolated-photon plus 1jet production as a function of $m^{\gamma-\rm jet1}$.

More…

Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 144, 2017.
Inspire Record 1498566 DOI 10.17182/hepdata.76903

Two searches for new phenomena in final states containing a same-flavour opposite-lepton (electron or muon) pair, jets, and large missing transverse momentum are presented. These searches make use of proton--proton collision data, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider, which correspond to an integrated luminosity of 14.7 fb$^{-1}$. Both searches target the pair production of supersymmetric particles, squarks or gluinos, which decay to final states containing a same-flavour opposite-sign lepton pair via one of two mechanisms: a leptonically decaying Z boson in the final state, leading to a peak in the dilepton invariant-mass distribution around the Z boson mass; and decays of neutralinos (e.g. $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$), yielding a kinematic endpoint in the dilepton invariant-mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted in simplified models of gluino-pair (squark-pair) production, and provide sensitivity to gluinos (squarks) with masses as large as 1.70 TeV (980 GeV).

36 data tables

Dilepton invariant mass distribution in SRZ.

Dilepton transverse momentum distribution in SRZ.

Missing transverse momentum distribution in SRZ.

More…

Version 2
Measurement of jet activity produced in top-quark events with an electron, a muon and two $b$-tagged jets in the final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 220, 2017.
Inspire Record 1495243 DOI 10.17182/hepdata.77436

Measurements of jet activity in top-quark pair events produced in proton--proton collisions are presented, using 3.2 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Events are chosen by requiring an opposite-charge $e\mu$ pair and two $b$-tagged jets in the final state. The normalised differential cross-sections of top-quark pair production are presented as functions of additional-jet multiplicity and transverse momentum, $p_{\mathrm T}$. The fraction of signal events that do not contain additional jet activity in a given rapidity region, the gap fraction, is measured as a function of the $p_{\mathrm T}$ threshold for additional jets, and is also presented for different invariant mass regions of the $e\mu b\bar{b}$ system. All measurements are corrected for detector effects and presented as particle-level distributions compared to predictions with different theoretical approaches for QCD radiation. While the kinematics of the jets from top-quark decays are described well, the generators show differing levels of agreement with the measurements of observables that depend on the production of additional jets.

23 data tables

Multiplicity of additional jets with pt>25GeV

Multiplicity of additional jets with pt>40GeV

Multiplicity of additional jets with pt>60GeV

More…

Measurements of $\psi(2S)$ and $X(3872) \to J/\psi\pi^+\pi^-$ production in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2017) 117, 2017.
Inspire Record 1495026 DOI 10.17182/hepdata.76839

Differential cross sections are presented for the prompt and non-prompt production of the hidden-charm states $X(3872)$ and $\psi(2S)$, in the decay mode $J/\psi \pi^+\pi^-$, measured using 11.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 8$ TeV by the ATLAS detector at the LHC. The ratio of cross-sections $X(3872)/\psi(2S)$ is also given, separately for prompt and non-prompt components, as well as the non-prompt fractions of $X(3872)$ and $\psi(2S)$. Assuming independent single effective lifetimes for non-prompt $X(3872)$ and $\psi(2S)$ production gives $R_B = \frac{\mathcal{B}(B \rightarrow X(3872)\textrm{ + any}) \mathcal{B}(X(3872 \rightarrow J/\psi\pi^+\pi^-)}{\mathcal{B}(B \rightarrow \psi(2S)\textrm{ + any}) \mathcal{B}(\psi(2S) \rightarrow J/\psi\pi^+\pi^-)} = (3.95 \pm 0.32 \mathrm{(stat)} \pm 0.08\mathrm{(sys)}) \times 10^{-2}$, while separating short- and long-lived contributions, assuming that the short-lived component is due to $B_c$ decays, gives $R_B = (3.57 \pm 0.33\mathrm{(stat)} \pm 0.11\mathrm{(sys)}) \times 10^{-2}$, with the fraction of non-prompt $X(3872)$ produced via $B_c$ decays for $p_\mathrm{T}(X(3872)) > 10$ GeV being $(25 \pm 13\mathrm{(stat)} \pm 2\mathrm{(sys)} \pm 5\mathrm{(spin)})\%$. The distributions of the dipion invariant mass in the $X(3872)$ and $\psi(2S)$ decays are also measured and compared to theoretical predictions.

15 data tables

Measured effective pseudo-proper lifetime for non-prompt $\psi(2S)$ production.

Measured effective pseudo-proper lifetime for non-prompt $X(3872)$ production.

Measured non-prompt $X(3872) / \psi(2S)$ production ratio using the single-lifetime fit model.

More…

Measurement of the $ZZ$ production cross section in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to\ell^{-}\ell^{+}\nu\bar{\nu}$ channels with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2017) 099, 2017.
Inspire Record 1494075 DOI 10.17182/hepdata.76732

A measurement of the $ZZ$ production in the $\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $\ell^{-}\ell^{+}\nu\bar{\nu}$ channels $(\ell = e, \mu)$ in proton--proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to \ell^{-}\ell^{+}\nu\bar{\nu}$ are measured in selected phase-space regions. The total cross section for $ZZ$ events produced with both $Z$ bosons in the mass range 66 to 116 GeV is measured from the combination of the two channels to be $7.3\pm0.4\textrm{(stat)}\pm0.3\textrm{(syst)}\pm0.2\textrm{(lumi)}$ pb, which is consistent with the Standard Model prediction of $6.6^{+0.7}_{-0.6}$ pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading $Z$ boson is used to set limits on anomalous neutral triple gauge boson couplings in $ZZ$ production.

8 data tables

The measured fiducial cross sections and the combined total cross section compared to the SM predictions. For experimental results, the statistical, systematic, and luminosity uncertainties are shown. For the theoretical predictions, the combined statistical and systematic uncertainty is shown.

The measured differential cross-section normalized to the bin width in values of the leading reconstructed dilepton pT for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

The measured differential cross-section normalized to the bin width in values of the number of reconstructed jets for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

More…

Version 2
Search for triboson $W^{\pm}W^{\pm}W^{\mp}$ production in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 141, 2017.
Inspire Record 1492320 DOI 10.17182/hepdata.76728

This paper reports a search for triboson $W^{\pm}W^{\pm}W^{\mp}$ production in two decay channels ($W^{\pm}W^{\pm}W^{\mp}\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu\ell^{\mp}\nu$ and $W^{\pm}W^{\pm}W^{\mp}\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu{}jj$ with $\ell=e, \mu$) in proton-proton collision data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ at a centre-of-mass energy of 8 TeV with the ATLAS detector at the Large Hadron Collider. Events with exactly three charged leptons, or two leptons with the same electric charge in association with two jets, are selected. The total number of events observed in data is consistent with the Standard Model (SM) predictions. The observed 95 % confidence level upper limit on the SM $W^{\pm}W^{\pm}W^{\mp}$ production cross section is found to be 730 fb with an expected limit of 560 fb in the absence of SM $W^{\pm}W^{\pm}W^{\mp}$ production. Limits are also set on $WWWW$ anomalous quartic gauge couplings.

14 data tables

The measured fiducial and total cross sections. The first uncertainty is the statistical uncertainty, and the second one is the combine systematic uncertainty.

The measured fiducial and total cross sections. The first uncertainty is the statistical uncertainty, and the second one is the combine systematic uncertainty.

95% confidence level interval on FS0/lanbda^4 provided for different values of unitarity scale lambda_FF

More…

Measurement of $W$ boson angular distributions in events with high transverse momentum jets at $\sqrt{s}=$ 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 765 (2017) 132-153, 2017.
Inspire Record 1487726 DOI 10.17182/hepdata.74701

The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.

5 data tables

Measured integrated cross-sections as a function of leading jet transverse momentum for the collinear region ($0.2 < \Delta R < 2.4$), the back-to-back region ($\Delta R > 2.4$) and inclusively.

Measured cross-section as a function of angular separation between the muon and the closest jet. Multiplicative correction factors for using prompt muons and prompt dressing photons in the particle-level selection, derived from ALPGEN 2.14 interfaced with PYTHIA 6.426, are also shown.

Breakdown of uncertainties in percent.

More…

Measurement of the inclusive cross-sections of single top-quark and top-antiquark $t$-channel production in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2017) 086, 2017.
Inspire Record 1486394 DOI 10.17182/hepdata.81947

A measurement of the $t$-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+je ts channel is presented, using 3.2 fb$^{-1}$ of proton--proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be $b$-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be $\sigma(tq) = 156 \pm 5 \, (\mathrm{stat.}) \pm 27 \, (\mathrm{syst.}) \pm 3\,(\mathrm{lumi.})$ pb for single top-quark production and $\sigma(\bar{t}q) = 91 \pm 4 \, (\mathrm{stat.}) \pm 18 \, (\mathrm{syst.}) \pm 2\,(\mathrm{lumi.})$ pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be $R_t = \sigma(tq)/\sigma(\bar{t}q) = 1.72 \pm 0.09 \, (\mathrm{stat.}) \pm 0.18 \, (\mathrm{syst.})$.

5 data tables

Predicted and observed event yields for the signal region. The quoted uncertainties include uncertainties in the theoretical cross-sections, in the number of multijet events, and the statistical uncertainties. The event yield of the $W^+ + $jets process in the $\ell^-$ channel is reported to be $<1$ in the paper. To provide a numerical value for this table in HEPdata, the yield is approximated with $1\pm 1$. The same is done for the event yield of the $W^- + $jets process in the $\ell^+$ channel.

Estimated scale factors, $\hat{\beta}$, and number of events, $\hat{\nu}=\hat{\beta}\cdot\nu$, for the $\ell^+$ and $\ell^-$ channel from the minimisation of the likelihood function. The quoted uncertainties in $\hat{\beta}$ and $\hat{\nu}$ include the statistical uncertainty and the uncertainties from the constraints on the background normalisation as used in the likelihood function.

Measured total cross sections of single top-quark and single top-antiquark production and their ratio $R_t$. In addition, the sum of top-quark and top-antiquark production is provided as well. Based on the total cross section the value of $f_\mathrm{LV}\cdot |V_{tb}|$ is determined.

More…

Measurement of $W^+W^-$ production in association with one jet in proton--proton collisions at $\sqrt{s} =8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 763 (2016) 114-133, 2016.
Inspire Record 1480365 DOI 10.17182/hepdata.79950

The production of $W$ boson pairs in association with one jet in $pp$ collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of $|\eta|<4.5$. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be $\sigma^{\mathrm{fid,1\textrm{-}jet}}_{WW}=136\pm6($stat$)\pm14($syst$)\pm3($lumi$)$ fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of $WW$ production with zero or one jet is measured to be $\sigma^{\mathrm{fid,}\leq\mathrm{1\textrm{-}jet}}_{WW}=511\pm9($stat$)\pm26($syst$)\pm10($lumi$)$ fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be $0.36\pm0.05$. Finally, a total cross section extrapolated from the fiducial measurement of $WW$ production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement.

4 data tables

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured ratio of the production cross section of WW production with one associated jet to the production cross section of WW production with zero associated jets. The ratio is determined in the in the fiducial region which is defined in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

More…

Study of hard double-parton scattering in four-jet events in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2016) 110, 2016.
Inspire Record 1479760 DOI 10.17182/hepdata.73908

Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb$^{-1}$, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum $p_{\mathrm{T}} \geq 20$ GeV and pseudorapidity $\eta \leq 4.4$, and at least one having $p_{\mathrm{T}} \geq 42.5$ GeV, the contribution of hard double-parton scattering is estimated to be $f_{\mathrm{DPS}} = 0.092 ^{+0.005}_{-0.011} (\mathrm{stat.}) ^{+0.033}_{-0.037} (\mathrm{syst.})$. After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective overlap area between the interacting protons, $\sigma_{\mathrm{eff}}$, was determined to be $\sigma_{\mathrm{eff}} = 14.9 ^{+1.2}_{-1.0} (\mathrm{stat.}) ^{+5.1}_{-3.8} (\mathrm{syst.})$ mb. This result is consistent within the quoted uncertainties with previous measurements of $\sigma_{\mathrm{eff}}$, performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to $21^{+7}_{-6}$% of the total inelastic cross-section measured at $\sqrt{s} = 7$ TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.

21 data tables

Normalized distribution of the variable $\Delta^{p_{\mathrm{T}}}_{34}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

Normalized distribution of the variable $\Delta\phi_{34}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

Normalized distribution of the variable $\Delta^{p_{\mathrm{T}}}_{12}$, defined in Eq (16) of the paper, in data after unfolding to particle level.

More…

Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in $\sqrt{s} = 8$ TeV proton-proton collisions

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2016) 175, 2016.
Inspire Record 1478981 DOI 10.17182/hepdata.73787

A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use $20\,{\rm fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino--higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass $m(\tilde{\chi}^0_1)$ of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger $m(\tilde{\chi}^0_1)$ due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small.

0 data tables

Measurement of the $b\overline{b}$ dijet cross section in $pp$ collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 670, 2016.
Inspire Record 1478355 DOI 10.17182/hepdata.75316

The dijet production cross section for jets containing a $b$-hadron ($b$-jets) has been measured in proton-proton collisions with a centre-of-mass energy of $\sqrt{s} = 7$ TeV, using the ATLAS detector at the LHC. The data used correspond to an integrated luminosity of 4.2 fb$^{-1}$. The cross section is measured for events with two identified $b$-jets with a transverse momentum $p_T > 20$ GeV and a minimum separation in the $\eta$-$\phi$ plane of $\Delta R = 0.4$. At least one of the jets in the event is required to have $p_T > 270$ GeV. The cross section is measured differentially as a function of dijet invariant mass, dijet transverse momentum, boost of the dijet system, and the rapidity difference, azimuthal angle and angular distance between the $b$-jets. The results are compared to different predictions of leading order and next-to-leading order perturbative quantum chromodynamics matrix elements supplemented with models for parton-showers and hadronization.

6 data tables

Results for the m_bb distribution. Statistical and systematic uncertainties are quoted.

Results for the DeltaPhi distribution. Statistical and systematic uncertainties are quoted.

Results for the y* distribution. Statistical and systematic uncertainties are quoted.

More…

Measurement of top quark pair differential cross-sections in the dilepton channel in $pp$ collisions at $\sqrt{s}$ = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 092003, 2016.
Inspire Record 1477814 DOI 10.17182/hepdata.75323

Measurements of normalized differential cross-sections of top quark pair ($t\bar t$) production are presented as a function of the mass, the transverse momentum and the rapidity of the $t\bar t$ system in proton-proton collisions at center-of-mass energies of $\sqrt{s}$ = 7 TeV and 8 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$ at 7 TeV and 20.2 fb$^{-1}$ at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a $b$-hadron. The measured distributions are corrected for detector effects and selection efficiency to cross-sections at the parton level. The differential cross-sections are compared with different Monte Carlo generators and theoretical calculations of $t\bar t$ production. The results are consistent with the majority of predictions in a wide kinematic range.

36 data tables

Parton-level normalized $t\bar t$ differential cross-sections for $t\bar t$ system mass $m_{t\bar t}$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

Parton-level normalized $t\bar t$ differential cross-sections for the $t\bar t$ system transverse momentum $p_{T, t\bar t}$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

Parton-level normalized $t\bar t$ differential cross-sections for the $t\bar t$ system absolute rapidity $|y_{t\bar t}|$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…