Measurement of the $CP$-violating phase $\phi_s$ in $B^0_s \to J/\psi\phi$ decays in ATLAS at 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 342, 2021.
Inspire Record 1776624 DOI 10.17182/hepdata.103066

A measurement of the $B^0_s \to J/\psi\phi$ decay parameters using 80.5 $\mathrm{fb}^{-1}$ of integrated luminosity collected with the ATLAS detector from 13 TeV proton-proton collisions at the LHC is presented. The measured parameters include the $CP$-violating phase $\phi_s$, the width difference $\Delta\Gamma_{s}$ between the $B^0_s$ meson mass eigenstates and the average decay width $\Gamma_{s}$. The values measured for the physical parameters are combined with those from 19.2 $\mathrm{fb}^{-1}$ of 7 TeV and 8 TeV data, leading to the following: \begin{eqnarray*} \phi_s & = & -0.087\phantom{0} \pm 0.036\phantom{0} ~\mathrm{(stat.)} \pm 0.021\phantom{0} ~\mathrm{(syst.)~rad} \\ \Delta\Gamma_{s} & = & \phantom{-}0.0657 \pm 0.0043 ~\mathrm{(stat.)} \pm 0.0037 ~\mathrm{(syst.)~ps}^{-1} \\ \Gamma_{s} & = & \phantom{-}0.6703 \pm 0.0014 ~\mathrm{(stat.)} \pm 0.0018 ~\mathrm{(syst.)~ps}^{-1} \\ \end{eqnarray*} Results for $\phi_s$ and $\Delta\Gamma_{s}$ are also presented as 68% confidence level contours in the $\phi_s$-$\Delta\Gamma_{s}$ plane. Furthermore, the transversity amplitudes and corresponding strong phases are measured. $\phi_s$ and $\Delta\Gamma_{s}$ measurements are in agreement with the Standard Model predictions.

9 data tables

Fitted values for the physical parameters of interest with their statistical and systematic uncertainties, for the result of solution (a).

Fitted values for the physical parameters of interest with their statistical and systematic uncertainties, for the result of solution (b).

Fit correlations between the physical parameters of interest, obtained from the fit for solution (a).

More…

Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS ALFA spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2020) 042, 2020.
Inspire Record 1762584 DOI 10.17182/hepdata.93063

A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

3 data tables

Hadron-level differential SD cross section as a function of Delta Eta.

Hadron-level differential SD cross section as a function of t.

Hadron-level differential SD cross section as a function of log_10 xi.


Version 4
Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 123, 2020.
Inspire Record 1750597 DOI 10.17182/hepdata.89413

A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb$^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s}=13$ TeV. Three $R$-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either $W$ bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95 % confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming $W$-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.

616 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit1">CRs</a> <li><a href="89413?version=1&table=Backgroundfit2">VRs</a> <li><a href="89413?version=1&table=Backgroundfit5">inclusive DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit6">inclusive DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit3">inclusive SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=1&table=VRkinematics1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=1&table=VRkinematics2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=1&table=VRkinematics3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=1&table=VRkinematics4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=1&table=VRkinematics5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=1&table=VRkinematics6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=1&table=SRkinematics1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=1&table=SRkinematics2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=1&table=SRkinematics3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=1&table=SRkinematics4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=1&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit7">binned DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit8">binned DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit9">binned SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=1&table=xsecupperlimits1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=1&table=xsecupperlimits2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=1&table=xsecupperlimits3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit1">CRs</a> <li><a href="89413?version=1&table=Backgroundfit2">VRs</a> <li><a href="89413?version=1&table=Backgroundfit5">inclusive DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit6">inclusive DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit3">inclusive SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=1&table=VRkinematics1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=1&table=VRkinematics2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=1&table=VRkinematics3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=1&table=VRkinematics4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=1&table=VRkinematics5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=1&table=VRkinematics6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=1&table=SRkinematics1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=1&table=SRkinematics2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=1&table=SRkinematics3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=1&table=SRkinematics4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=1&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit7">binned DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit8">binned DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit9">binned SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=1&table=xsecupperlimits1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=1&table=xsecupperlimits2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=1&table=xsecupperlimits3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>SimpleAnalysis framework implementation</b> of the search SRs is available under "Resources" (purple button on the left)

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=3&table=Background fit 1">CRs</a> <li><a href="89413?version=3&table=Background fit 2">VRs</a> <li><a href="89413?version=3&table=Background fit 5">inclusive DF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 6">inclusive DF-1J SRs</a> <li><a href="89413?version=3&table=Background fit 3">inclusive SF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=3&table=VR kinematics 1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=3&table=VR kinematics 2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=3&table=VR kinematics 3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=3&table=VR kinematics 4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=3&table=VR kinematics 5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=3&table=VR kinematics 6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=3&table=SR kinematics 1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=3&table=SR kinematics 2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=3&table=SR kinematics 3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=3&table=SR kinematics 4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=3&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=3&table=Exclusion contour (exp) 1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=3&table=Background fit 7">binned DF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 8">binned DF-1J SRs</a> <li><a href="89413?version=3&table=Background fit 9">binned SF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=3&table=Exclusion contour (exp) 4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=3&table=xsec upper limits 1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=3&table=xsec upper limits 2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=3&table=xsec upper limits 3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,inf) for C1C1WW grid">SR-DF-0J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[160,inf) for C1C1WW grid">SR-DF-0J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,120) for C1C1WW grid">SR-DF-0J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[120,160) for C1C1WW grid">SR-DF-0J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,105) for C1C1WW grid">SR-DF-0J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[105,110) for C1C1WW grid">SR-DF-0J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[110,120) for C1C1WW grid">SR-DF-0J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[120,140) for C1C1WW grid">SR-DF-0J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[140,160) for C1C1WW grid">SR-DF-0J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[160,180) for C1C1WW grid">SR-DF-0J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[180,220) for C1C1WW grid">SR-DF-0J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[220,260) for C1C1WW grid">SR-DF-0J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[260,inf) for C1C1WW grid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,inf) for C1C1WW grid">SR-DF-1J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[160,inf) for C1C1WW grid">SR-DF-1J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,120) for C1C1WW grid">SR-DF-1J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[120,160) for C1C1WW grid">SR-DF-1J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,105) for C1C1WW grid">SR-DF-1J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[105,110) for C1C1WW grid">SR-DF-1J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[110,120) for C1C1WW grid">SR-DF-1J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[120,140) for C1C1WW grid">SR-DF-1J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[140,160) for C1C1WW grid">SR-DF-1J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[160,180) for C1C1WW grid">SR-DF-1J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[180,220) for C1C1WW grid">SR-DF-1J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[220,260) for C1C1WW grid">SR-DF-1J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[260,inf) for C1C1WW grid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,inf) for C1C1WW grid">SR-SF-0J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[160,inf) for C1C1WW grid">SR-SF-0J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,120) for C1C1WW grid">SR-SF-0J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[120,160) for C1C1WW grid">SR-SF-0J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,105) for C1C1WW grid">SR-SF-0J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[105,110) for C1C1WW grid">SR-SF-0J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[110,120) for C1C1WW grid">SR-SF-0J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[120,140) for C1C1WW grid">SR-SF-0J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[140,160) for C1C1WW grid">SR-SF-0J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[160,180) for C1C1WW grid">SR-SF-0J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[180,220) for C1C1WW grid">SR-SF-0J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[220,260) for C1C1WW grid">SR-SF-0J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[260,inf) for C1C1WW grid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,inf) for C1C1WW grid">SR-SF-1J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[160,inf) for C1C1WW grid">SR-SF-1J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,120) for C1C1WW grid">SR-SF-1J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[120,160) for C1C1WW grid">SR-SF-1J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,105) for C1C1WW grid">SR-SF-1J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[105,110) for C1C1WW grid">SR-SF-1J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[110,120) for C1C1WW grid">SR-SF-1J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[120,140) for C1C1WW grid">SR-SF-1J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[140,160) for C1C1WW grid">SR-SF-1J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[160,180) for C1C1WW grid">SR-SF-1J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[180,220) for C1C1WW grid">SR-SF-1J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[220,260) for C1C1WW grid">SR-SF-1J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[260,inf) for C1C1WW grid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,inf) for C1C1WW grid">SR-DF-0J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[160,inf) for C1C1WW grid">SR-DF-0J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,120) for C1C1WW grid">SR-DF-0J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[120,160) for C1C1WW grid">SR-DF-0J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,105) for C1C1WW grid">SR-DF-0J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[105,110) for C1C1WW grid">SR-DF-0J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[110,120) for C1C1WW grid">SR-DF-0J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[120,140) for C1C1WW grid">SR-DF-0J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[140,160) for C1C1WW grid">SR-DF-0J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[160,180) for C1C1WW grid">SR-DF-0J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[180,220) for C1C1WW grid">SR-DF-0J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[220,260) for C1C1WW grid">SR-DF-0J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[260,inf) for C1C1WW grid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,inf) for C1C1WW grid">SR-DF-1J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[160,inf) for C1C1WW grid">SR-DF-1J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,120) for C1C1WW grid">SR-DF-1J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[120,160) for C1C1WW grid">SR-DF-1J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,105) for C1C1WW grid">SR-DF-1J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[105,110) for C1C1WW grid">SR-DF-1J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[110,120) for C1C1WW grid">SR-DF-1J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[120,140) for C1C1WW grid">SR-DF-1J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[140,160) for C1C1WW grid">SR-DF-1J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[160,180) for C1C1WW grid">SR-DF-1J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[180,220) for C1C1WW grid">SR-DF-1J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[220,260) for C1C1WW grid">SR-DF-1J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[260,inf) for C1C1WW grid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,inf) for C1C1WW grid">SR-SF-0J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[160,inf) for C1C1WW grid">SR-SF-0J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,120) for C1C1WW grid">SR-SF-0J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[120,160) for C1C1WW grid">SR-SF-0J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,105) for C1C1WW grid">SR-SF-0J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[105,110) for C1C1WW grid">SR-SF-0J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[110,120) for C1C1WW grid">SR-SF-0J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[120,140) for C1C1WW grid">SR-SF-0J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[140,160) for C1C1WW grid">SR-SF-0J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[160,180) for C1C1WW grid">SR-SF-0J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[180,220) for C1C1WW grid">SR-SF-0J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[220,260) for C1C1WW grid">SR-SF-0J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[260,inf) for C1C1WW grid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,inf) for C1C1WW grid">SR-SF-1J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[160,inf) for C1C1WW grid">SR-SF-1J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,120) for C1C1WW grid">SR-SF-1J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[120,160) for C1C1WW grid">SR-SF-1J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,105) for C1C1WW grid">SR-SF-1J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[105,110) for C1C1WW grid">SR-SF-1J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[110,120) for C1C1WW grid">SR-SF-1J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[120,140) for C1C1WW grid">SR-SF-1J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[140,160) for C1C1WW grid">SR-SF-1J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[160,180) for C1C1WW grid">SR-SF-1J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[180,220) for C1C1WW grid">SR-SF-1J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[220,260) for C1C1WW grid">SR-SF-1J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[260,inf) for C1C1WW grid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=3&table=Cutflow 1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=3&table=Cutflow 2">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=3&table=Cutflow 3">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>SimpleAnalysis framework implementation</b> of the search SRs is available under "Resources" (purple button on the left)

More…

Version 3
Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, $b$-jets and missing transverse momentum

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 12 (2019) 060, 2019.
Inspire Record 1748602 DOI 10.17182/hepdata.89408

The result of a search for the pair production of the lightest supersymmetric partner of the bottom quark ($\tilde{b}_{1}$) using 139 fb$^{-1}$ of proton-proton data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector is reported. In the supersymmetric scenarios considered both of the bottom-squarks decay into a $b$-quark and the second-lightest neutralino, $\tilde{b}_{1} \rightarrow b + \tilde{\chi}^{0}_{2}$. Each $\tilde{\chi}^{0}_{2}$ is assumed to subsequently decay with 100% branching ratio into a Higgs boson ($h$) like the one in the Standard Model and the lightest neutralino: $\tilde{\chi}^{0}_{2} \rightarrow h + \tilde{\chi}^{0}_{1}$. The $\tilde{\chi}^{0}_{1}$ is assumed to be the lightest supersymmetric particle (LSP) and is stable. Two signal mass configurations are targeted: the first has a constant LSP mass of 60 GeV; and the second has a constant mass difference between the $\tilde{\chi}^{0}_{2}$ and $\tilde{\chi}^{0}_{1}$ of 130 GeV. The final states considered contain no charged leptons, three or more $b$-jets, and large missing transverse momentum. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered. Limits at the 95% confidence level are placed in the supersymmetric models considered, and bottom-squarks with mass up to 1.5 TeV are excluded.

144 data tables

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

More…

Measurement of the inclusive isolated-photon cross section in $pp$ collisions at $\sqrt{s}=13$ TeV using 36 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2019) 203, 2019.
Inspire Record 1748270 DOI 10.17182/hepdata.91968

The differential cross section for isolated-photon production in $pp$ collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb$^{-1}$. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from JETPHOX and SHERPA as well as next-to-next-to-leading-order QCD calculations from NNLOJET are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties.

8 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<1.37$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $1.56<|\eta^{\gamma}|<1.81$.

More…

Measurement of $K_S^0$ and $\Lambda^0$ production in $t \bar{t}$ dileptonic events in $pp$ collisions at $\sqrt{s} =$ 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 1017, 2019.
Inspire Record 1746286 DOI 10.17182/hepdata.91243

Measurements of $K_S^0$ and $\Lambda^0$ production in $t\bar{t}$ final states have been performed. They are based on a data sample with integrated luminosity of 4.6 $\mathrm{fb}^{-1}$ from proton-proton collisions at a centre-of-mass energy of 7 TeV, collected in 2011 with the ATLAS detector at the Large Hadron Collider. Neutral strange particles are separated into three classes, depending on whether they are contained in a jet, with or without a $b$-tag, or not associated with a selected jet. The aim is to look for differences in their main kinematic distributions. A comparison of data with several Monte Carlo simulations using different hadronisation and fragmentation schemes, colour reconnection models and different tunes for the underlying event has been made. The production of neutral strange particles in $t\bar{t}$ dileptonic events is found to be well described by current Monte Carlo models for $K_S^0$ and $\Lambda^0$ production within jets, but not for those produced outside jets.

22 data tables

The transverse momentum ($p_{T}$) distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking inefficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

The energy fraction ($x_{K}$) distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking ineficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

The energy distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking ineficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

More…

Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 847, 2019.
Inspire Record 1744201 DOI 10.17182/hepdata.90953

The inclusive cross-section for jet production in association with a Z boson decaying into an electron-positron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb$^{-1}$ of $\sqrt s = 8$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations.

20 data tables

List of experimentally considered systematic uncertainties for the Z + jets cross-section measurement

The double-differential Z + jets production cross-section as a function of |y_{jet}| in the 25 GeV < p_{T}^{jet} < 50 GeV range. The particle level phase space definition: - 66 GeV < m_{ee} < 116 GeV - |eta_{electron}| < 2.47 - p_{T}^{electron} > 20 GeV - anti-kt R=0.4 jets N>=1 - |y_{jet}| < 3.4 - p_{T}^{jet} > 25 GeV - Delta R(jet, electron) > 0.4

The double-differential Z + jets production cross-section as a function of |y_{jet}| in the 50 GeV < p_{T}^{jet} < 100 GeV range. The particle level phase space definition: - 66 GeV < m_{ee} < 116 GeV - |eta_{electron}| < 2.47 - p_{T}^{electron} > 20 GeV - anti-kt R=0.4 jets N>=1 - |y_{jet}| < 3.4 - p_{T}^{jet} > 25 GeV - Delta R(jet, electron) > 0.4

More…

Measurement of $W^{\pm}$-boson and $Z$-boson production cross-sections in $pp$ collisions at $\sqrt{s}=2.76$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 901, 2019.
Inspire Record 1742785 DOI 10.17182/hepdata.91267

The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.

28 data tables

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.

More…

Version 2
Properties of jet fragmentation using charged particles measured with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 052011, 2019.
Inspire Record 1740909 DOI 10.17182/hepdata.89321

This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV $<p_T<$ 2.5 TeV and pseudorapidity $|\eta| < 2.1$ from an integrated luminosity of 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions are reconstructed with the ATLAS detector at the Large Hadron Collider. Charged-particle tracks with $p_T > 500$ MeV and $|\eta| < 2.5$ are used to probe the detailed structure of the jet. The fragmentation properties of the more forward and the more central of the two leading jets from each event are studied. The data are unfolded to correct for detector resolution and acceptance effects. Comparisons with parton shower Monte Carlo generators indicate that existing models provide a reasonable description of the data across a wide range of phase space, but there are also significant differences. Furthermore, the data are interpreted in the context of quark- and gluon-initiated jets by exploiting the rapidity dependence of the jet flavor fraction. A first measurement of the charged-particle multiplicity using model-independent jet labels (topic modeling) provides a promising alternative to traditional quark and gluon extractions using input from simulation. The simulations provide a reasonable description of the quark-like data across the jet $p_T$ range presented in this measurement, but the gluon-like data have systematically fewer charged particles than the simulations.

368 data tables

$\langle n_{ch} \rangle$, forward jet.

$\langle n_{ch} \rangle$, forward jet.

$\langle n_{ch} \rangle$, central jet.

More…

Version 2
Search for diboson resonances in hadronic final states in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 09 (2019) 091, 2019.
Inspire Record 1740685 DOI 10.17182/hepdata.91052

Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted $W$ or $Z$ boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.

20 data tables

Limit Plot

Limit Plot

Limit Plot

More…

Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 052013, 2019.
Inspire Record 1739784 DOI 10.17182/hepdata.90193

A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.

14 data tables

Transverse mass distribution for events satisfying all selection criteria in the electron channel.

Transverse mass distribution for events satisfying all selection criteria in the muon channel.

Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.

More…

Observation of electroweak production of a same-sign $W$ boson pair in association with two jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 123 (2019) 161801, 2019.
Inspire Record 1738841 DOI 10.17182/hepdata.84643

This Letter presents the observation and measurement of electroweak production of a same-sign $W$ boson pair in association with two jets using 36.1 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed in the detector fiducial phase-space region, defined by the presence of two same-sign leptons, electron or muon, and at least two jets with a large invariant mass and rapidity difference. A total of 122 candidate events are observed for a background expectation of $69 \pm 7$ events, corresponding to an observed signal significance of 6.5 standard deviations. The measured fiducial signal cross section is $\sigma^{\mathrm {fid.}}=2.89^{+0.51}_{-0.48} \mathrm{(stat.)} ^{+0.29}_{-0.28} \mathrm{(syst.)}$ fb.

6 data tables

Measured fiducial cross section.

The $m_{jj}$ distribution for events meeting all selection criteria for the signal region. Signal and individual background distributions are shown as predicted after the fit. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{jj}=3.8$ TeV.

The $m_{ll}$ distribution for events meeting all selection criteria for the signal region as predicted after the fit. The fitted signal strength and nuisance parameters have been propagated, with the exception of the uncertainties due to the interference and electroweak corrections for which a flat uncertainty is assigned. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{ll}=824$ GeV.

More…

Search for excited electrons singly produced in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 803, 2019.
Inspire Record 1738845 DOI 10.17182/hepdata.90452

A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.

7 data tables

The distribution of $m_{lljj}$ used to discriminate the signal from background processes in the $eejj$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.

The distribution of $m_{T}^{\nu W}$ used to discriminate the signal and background processes in the $e\nu J$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The last bin includes overflow events (the underflow is not shown). The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.

Upper limits on $\sigma\times B$ as a function of $m_{e^*}$ in the $eejj$ channel. The $\pm 1(2)\sigma$ uncertainty bands around the expected limit represent all sources of systematic and statistical uncertainties.

More…

Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 031802, 2020.
Inspire Record 1736730 DOI 10.17182/hepdata.89874

A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb$^{-1}$ of 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 GeV to 4000 GeV. The search improves by approximately a factor of five the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20\le|z|\le60$ and extends the charge range to $60<|z|\le100$.

60 data tables

Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.

Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 HECO production as a function of mass for various values of electric charge in the range $20\le|z|\le100$.

Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-1/2 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.

More…

Measurement of distributions sensitive to the underlying event in inclusive $Z$-boson production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 666, 2019.
Inspire Record 1736531 DOI 10.17182/hepdata.90831

This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a $Z$ boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb$^{-1}$. Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the $Z$ boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underlying-event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.

525 data tables

Figure 09d, mean sumPt toward, toward region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)

transverse region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)

Figure 09c, mean sumPt transmin, transmin region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)

More…

Search for heavy neutral leptons in decays of $W$ bosons produced in 13 TeV $pp$ collisions using prompt and displaced signatures with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2019) 265, 2019.
Inspire Record 1736526 DOI 10.17182/hepdata.91136

The problems of neutrino masses, matter-antimatter asymmetry, and dark matter could be successfully addressed by postulating right-handed neutrinos with Majorana masses below the electroweak scale. In this work, leptonic decays of $W$ bosons extracted from 32.9 fb$^{-1}$ to 36.1 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC are used to search for heavy neutral leptons (HNLs) that are produced through mixing with muon or electron neutrinos. The search is conducted using the ATLAS detector in both prompt and displaced leptonic decay signatures. The prompt signature requires three leptons produced at the interaction point (either $\mu\mu e$ or $e e\mu$) with a veto on same-flavour opposite-charge topologies. The displaced signature comprises a prompt muon from the $W$ boson decay and the requirement of a dilepton vertex (either $\mu\mu$ or $\mu e$) displaced in the transverse plane by 4-300 mm from the interaction point. The search sets constraints on the HNL mixing to muon and electron neutrinos for HNL masses in the range 4.5-50 GeV.

8 data tables

Displaced HNL event selection efficiency as a function of mean proper decay length for HNL mass 5, 7.5, 10 and 12.5 GeV.

Prompt HNL event selection efficiency as a function of mean proper decay length for HNL mass 10 GeV.

Displaced HNL search observed 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNC case).

More…

Search for the electroweak diboson production in association with a high-mass dijet system in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 032007, 2019.
Inspire Record 1735560 DOI 10.17182/hepdata.89647

This paper reports on a search for the electroweak diboson ($WW/WZ/ZZ$) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 35.5 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying $W/Z$ boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of $WW/WZ/ZZ$ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be $45.1 \pm 8.6(\mathrm{stat.}) ^{+15.9} _{-14.6} (\mathrm{syst.})$ fb.

2 data tables

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. The three lepton channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. in the three lepton channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).


Measurement of fiducial and differential $W^+W^-$ production cross-sections at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 884, 2019.
Inspire Record 1734263 DOI 10.17182/hepdata.89225

A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.

43 data tables

Measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Statistical correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Total correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

More…

Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 798 (2019) 134942, 2019.
Inspire Record 1731814 DOI 10.17182/hepdata.89455

A search for a right-handed gauge boson $W_{\mathrm{R}}$, decaying into a boosted right-handed heavy neutrino $N_{\mathrm{R}}$, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb$^{-1}$. The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared with to expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the $W_{\mathrm{R}}$ and $N_{\mathrm{R}}$ mass plane. Mass values of the $W_{\mathrm{R}}$ smaller than 3.8-5 TeV are excluded for $N_{\mathrm{R}}$ in the mass range 0.1-1.8 TeV.

4 data tables

Expected 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the electron channel.

Observed 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the electron channel.

Expected 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the muon channel.

More…

Measurement of the cross-section and charge asymmetry of $W$ bosons produced in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 760, 2019.
Inspire Record 1729240 DOI 10.17182/hepdata.89322

This paper presents measurements of the $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\nu$ cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of $20.2~\mbox{fb$^{-1}$}$. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.

8 data tables

The correction factors, $C_{W^±,i}$ with their associated systematic uncertainties as a function of $|\eta_{\mu}|$, for $W^+$ and $W^−$

The integrated global correction factor $C_{W^±}$, for $W^+$ and $W^−$

Cross-sections (differential in $\eta_{\mu}$) and asymmetry, as a function of $|\eta_{\mu}|$). The central values are provided along with the statistical and dominant systematic uncertainties: the data statistical uncertainty (Data Stat.), the $E_T^{\textrm{miss}}$ uncertainty, the uncertainties related to muon reconstruction (Muon Reco.), those related to the background, those from MC statistics (MC Stat.), and modelling uncertainties. The uncertainties of the cross-sections are given in percent and those of the asymmetry as an absolute difference from the nominal.

More…

Fluctuations of anisotropic flow in Pb+Pb collisions at $ \sqrt{{\mathrm{s}}_{\mathrm{NN}}} $ = 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2020) 051, 2020.
Inspire Record 1728935 DOI 10.17182/hepdata.89325

Multi-particle azimuthal cumulants are measured as a function of centrality and transverse momentum using 470 $\mu$b$^{-1}$ of Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of harmonic flow coefficients $v_n$ and correlated fluctuations between two harmonics $v_n$ and $v_m$. For the first time, a non-zero four-particle cumulant is observed for dipolar flow, $v_1$. The four-particle cumulants for elliptic flow, $v_2$, and triangular flow, $v_3$, exhibit a strong centrality dependence and change sign in ultra-central collisions. This sign change is consistent with significant non-Gaussian fluctuations in $v_2$ and $v_3$. The four-particle cumulant for quadrangular flow, $v_4$, is found to change sign in mid-central collisions. Correlations between two harmonics are studied with three- and four-particle mixed-harmonic cumulants, which indicate an anti-correlation between $v_2$ and $v_3$, and a positive correlation between $v_2$ and $v_4$. These correlations decrease in strength towards central collisions and either approach zero or change sign in ultra-central collisions. To investigate the possible flow fluctuations arising from intrinsic centrality or volume fluctuations, the results are compared between two different event classes used for centrality definitions. In peripheral and mid-central collisions where the cumulant signals are large, only small differences are observed. In ultra-central collisions, the differences are much larger and transverse momentum dependent. These results provide new information to disentangle flow fluctuations from the initial and final states, as well as new insights on the influence of centrality fluctuations.

291 data tables

NchRec v.s. Et

<NchRec> w.r.t. Et

<Et> w.r.t. NchRec

More…

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 123 (2019) 052001, 2019.
Inspire Record 1728664 DOI 10.17182/hepdata.89399

This letter describes the observation of the light-by-light scattering process, $\gamma\gamma\rightarrow\gamma\gamma$, in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb$^{-1}$, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_{\textrm{T}}^{\gamma} > 3$ GeV and pseudorapidity $|\eta_{\gamma}| < 2.37$, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 $\pm$ 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 $\pm$ 13 (stat.) $\pm$ 7 (syst.) $\pm$ 3 (lumi.) nb.

3 data tables

The diphoton acoplanarity A$_{\phi}$ distribution for events satisfying the signal selection, but before the A$_{\phi} < 0.01$ requirement. Data points are compared with the signal and background expectations. Systematic uncertainties of the signal expectation process, excluding that of the luminosity, is shown as shaded band.

Diphoton transverse momentum for events satisfying the signal selection. Data (points) are compared with the sum of signal and background expectations (histograms). Systematic uncertainties of the signal expectation process, excluding that of the luminosity, is shown as shaded band.

Fiducial cross section for light-by-light scattering


Evidence for the production of three massive vectorbosons in $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
PoS DIS2019 (2019) 135, 2019.
Inspire Record 1726499 DOI 10.17182/hepdata.89323

A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.

2 data tables

Measurement of the $WWW$ cross section.

Measurement of the $WWZ$ cross section.


Version 3
Search for high-mass dilepton resonances using 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 796 (2019) 68-87, 2019.
Inspire Record 1725190 DOI 10.17182/hepdata.88425

A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=$13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb$^{-1}$. A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E6-motivated $Z^\prime_\psi$ boson. Also presented are limits on Heavy Vector Triplet model couplings.

72 data tables

Distribution of the dielectron invariant mass for events passing the full selection.

Distribution of the dielectron invariant mass for events passing the full selection.

Distribution of the dielectron invariant mass for events passing the full selection.

More…

Measurement of jet-substructure observables in top quark, $W$ boson and light jet production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 08 (2019) 033, 2019.
Inspire Record 1724098 DOI 10.17182/hepdata.89324

A measurement of jet substructure variables is presented using data collected in 2016 by the ATLAS experiment at the LHC with proton-proton collisions at $\sqrt{s}=13$ TeV. Large-radius jets groomed with the trimming and soft-drop algorithms are studied. Dedicated event selections are used to study jets produced by light quarks or gluons, and hadronically decaying top quarks and $W$ bosons. The variables measured are sensitive to pronged substructure, and therefore are typically used for tagging jets from boosted massive particles. These include the energy correlation functions and the $N$-subjettiness variables. The number of subjets and the Les Houches angularity are also considered. The distributions of the substructure variables, corrected for detector effects, are compared to the predictions of various Monte Carlo event generators. They are also compared between the large-radius jets originating from light quarks or gluons, and hadronically decaying top quarks and $W$ bosons.

88 data tables

Figure 3a, Normalised differential Nsubjets distribution for soft-drop groomed jets, Dijet selection.

Figure 4a, Normalised differential LHA distribution for soft-drop groomed jets, Dijet selection

Figure 5a, Normalised differential C2 distribution for soft-drop groomed jets, Dijet selection

More…