Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 846 (2023) 138154, 2023.
Inspire Record 2648097 DOI 10.17182/hepdata.139723

Parton energy loss in the quark-gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb$^{-1}$ of Pb+Pb data and 260 pb$^{-1}$ of $pp$ data, both at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, with the ATLAS detector. The process $pp \to \gamma$+jet+$X$ and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum ($p_\mathrm{T}$) above $50$ GeV and reported as a function of jet $p_\mathrm{T}$. This selection results in a sample of jets with a steeply falling $p_\mathrm{T}$ distribution that are mostly initiated by the showering of quarks. The $pp$ and Pb+Pb measurements are used to report the nuclear modification factor, $R_\mathrm{AA}$, and the fractional energy loss, $S_\mathrm{loss}$, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The $R_\mathrm{AA}$ and $S_\mathrm{loss}$ values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss.

10 data tables

The differential cross-section of photon-tagged jets as a function of jet $p_{\mathrm{T}}$ in pp collisions.

The yields of photon-tagged jets as a function of jet $p_{\mathrm{T}}$ in Pb+Pb collisions for different centrality intervals.

The nuclear modification factor of photon-tagged jets as a function of jet $p_{\mathrm{T}}$ for different centrality intervals.

More…

Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

62 data tables

The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.

The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

More…

Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

140 data tables

- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i>&nbsp;&nbsp; <a href="?version=1&table=Table1">for p+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table10">for Pb+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table19">for Xe+Xe</a>&nbsp;&nbsp; <br><i>p+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table2">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table3">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table4">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table5">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table6">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table7">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table8">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table9">0-90%</a>&nbsp;&nbsp; <br><i>Pb+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table11">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table12">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table13">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table14">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table15">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table16">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table17">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table18">60-80%</a>&nbsp;&nbsp; <br><i>Xe+Xe:</i>&nbsp;&nbsp; <a href="?version=1&table=Table20">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table21">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table22">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table23">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table24">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table25">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table26">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table27">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i>&nbsp;&nbsp; <a href="?version=1&table=Table28">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table29">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table30">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table31">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table32">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table33">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table34">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table35">0-90%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i>&nbsp;&nbsp; <a href="?version=1&table=Table36">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table37">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table38">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table39">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table40">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table41">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table42">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table43">60-80%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i>&nbsp;&nbsp; <a href="?version=1&table=Table44">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table45">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table46">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table47">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table48">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table49">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table50">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table51">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table52">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table53">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table54">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table55">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table56">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table57">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table58">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table59">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table60">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table61">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table62">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table63">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table64">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table65">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table66">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table67">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table68">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table69">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table70">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table71">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-60%:&nbsp;&nbsp; <a href="?version=1&table=Table72">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table73">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table74">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table75">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-90%:&nbsp;&nbsp; <a href="?version=1&table=Table76">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table77">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table78">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table79">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;0-90%:&nbsp;&nbsp; <a href="?version=1&table=Table80">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table81">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table82">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table83">15.1-17.3GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table84">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table85">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table86">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table87">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table88">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table89">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table90">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table91">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table92">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table93">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table94">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table95">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table96">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table97">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table98">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table99">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table100">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table101">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table102">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table103">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table104">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table105">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table106">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table107">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table108">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table109">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table110">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table111">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table112">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table113">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table114">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table115">60-95GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table116">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table117">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table118">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table119">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table120">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table121">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table122">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table123">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table124">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table125">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table126">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table127">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table128">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table129">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table130">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table131">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table132">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table133">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table134">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table135">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table136">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table137">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table138">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table139">20-23GeV</a>&nbsp;&nbsp; <br>- - - - - - - - - - - - - - - - - - - -

Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by &#9001;TPPB&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

More…

Strong constraints on jet quenching in centrality-dependent $p$+Pb collisions at 5.02 TeV from ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 072301, 2023.
Inspire Record 2090791 DOI 10.17182/hepdata.130943

Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including $pp$ and $p$+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p$+Pb and 3.6 pb$^{-1}$ of $pp$ collisions at 5.02 TeV. The yields of charged hadrons with $p_\mathrm{T}^\mathrm{ch} >0.5$ GeV near and opposite in azimuth to jets with $p_\mathrm{T}^\mathrm{jet} > 30$ or $60$ GeV, and the ratios of these yields between $p$+Pb and $pp$ collisions, $I_{p\mathrm{Pb}}$, are reported. The collision centrality of $p$+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The $I_{p\mathrm{Pb}}$ values are consistent with unity within a few percent for hadrons with $p_\mathrm{T}^\mathrm{ch} >4$ GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central $p$+Pb collisions.

8 data tables

The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).

The per-jet charged particle yield in pPb and pp collisions for hadrons opposite to a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).

The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).

More…

Measurements of the suppression and correlations of dijets in Pb+Pb collisions at $\sqrt{s_{_\text{NN}}}$ = 5.02 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.C 107 (2023) 054908, 2023.
Inspire Record 2075431 DOI 10.17182/hepdata.145875

Studies of the correlations of the two highest transverse momentum (leading) jets in individual Pb+Pb collision events can provide information about the mechanism of jet quenching by the hot and dense matter created in such collisions. In Pb+Pb and pp collisions at $\sqrt{s_{_\text{NN}}}$ = 5.02 TeV, measurements of the leading dijet transverse momentum ($p_{\mathrm{T}}$) correlations are presented. Additionally, measurements in Pb+Pb collisions of the dijet pair nuclear modification factors projected along leading and subleading jet $p_{\mathrm{T}}$ are made. The measurements are performed using the ATLAS detector at the LHC with 260 pb$^{-1}$ of pp data collected in 2017 and 2.2 nb$^{-1}$ of Pb+Pb data collected in 2015 and 2018. An unfolding procedure is applied to the two-dimensional leading and subleading jet $p_{\mathrm{T}}$ distributions to account for experimental effects in the measurement of both jets. Results are provided for dijets with leading jet $p_{\mathrm{T}}$ greater than 100 GeV. Measurements of the dijet-yield-normalized $x_{\mathrm{J}}$ distributions in Pb+Pb collisions show an increased fraction of imbalanced jets compared to pp collisions; these measurements are in agreement with previous measurements of the same quantity at 2.76 TeV in the overlapping kinematic range. Measurements of the absolutely-normalized dijet rate in Pb+Pb and pp collisions are also presented, and show that balanced dijets are significantly more suppressed than imbalanced dijets in Pb+Pb collisions. It is observed in the measurements of the pair nuclear modification factors that the subleading jets are significantly suppressed relative to leading jets with $p_{\mathrm{T}}$ between 100 and 316 GeV for all centralities in Pb+Pb collisions.

23 data tables

absolutely normalized dijet cross sections from pp collisions

absolutely normalized dijet yields scaled by 1/<TAA> in 0-10% central PbPb collisions

absolutely normalized dijet yields scaled by 1/<TAA> in 10-20% central PbPb collisions

More…

Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: a probe of the heavy-ion initial state and nuclear deformation

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.C 107 (2023) 054910, 2023.
Inspire Record 2075412 DOI 10.17182/hepdata.139082

The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.

445 data tables

$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality

$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality

$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality

More…

Measurements of azimuthal anisotropies of jet production in Pb+Pb collisions at $\sqrt{s_{NN}} =$ 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.C 105 (2022) 064903, 2022.
Inspire Record 1967021 DOI 10.17182/hepdata.132663

The azimuthal variation of jet yields in heavy-ion collisions provides information about the path-length dependence of the energy loss experienced by partons passing through the hot, dense nuclear matter known as the quark-gluon plasma. This paper presents the azimuthal anisotropy coefficients $v_2$, $v_3$, and $v_4$ measured for jets in Pb+Pb collisions at $\sqrt{s_{NN}} =$ 5.02 TeV using the ATLAS detector at the LHC. The measurement uses data collected in 2015 and 2018, corresponding to an integrated luminosity of 2.2 nb$^{-1}$. The $v_n$ values are measured as a function of the transverse momentum of the jets between 71 GeV and 398 GeV and the event centrality. A nonzero value of $v_2$ is observed in all but the most central collisions. The value of $v_2$ is largest for jets with lower transverse momentum, with values up to 0.05 in mid-central collisions. A smaller, nonzero value of $v_3$ of approximately 0.01 is measured with no significant dependence on jet $p_T$ or centrality, suggesting that fluctuations in the initial state play a small but distinct role in jet energy loss. No significant deviation of $v_4$ from zero is observed in the measured kinematic region.

44 data tables

The JES for R = 0.2 jets in Pb+Pb collisions as a function of $p_T^{truth}$ for centrality selections of 0-5%, 5-10%, 10-20%, 20-40% and 40-60%.

The JER for R = 0.2 jets in Pb+Pb collisions as a function of $p_T^{truth}$ for centrality selections of 0-5%, 5-10%, 10-20%, 20-40% and 40-60%.

The JES for R = 0.2 jets in Pb+Pb collisions as a function of $2|\Psi_2-\phi^{reco}|$ for centrality selections of 0-5%, 5-10%, 10-20%, 20-40% and 40-60%.

More…

Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 829 (2022) 137077, 2022.
Inspire Record 1914582 DOI 10.17182/hepdata.111123

Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.

6 data tables

Summary of charm muon double differential cross section in pp collisions at 5.02 TeV as a function of pT. Uncertainties are statistical and systematic, respectively.

Summary of charm muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.

Summary of bottom muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.

More…

Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Phys.Rev.C 104 (2021) 014903, 2021.
Inspire Record 1842843 DOI 10.17182/hepdata.114165

Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb$^{-1}$ of 5.02 TeV Pb+Pb collision data collected by the ATLAS experiment at the LHC. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and charged-particle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the non-flow contribution to the correlation. Significant nonzero values of the second- and third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton-proton and proton-lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collisions.

2 data tables

The measured $v_2$ and $v_3$ charged-particle anisotropies as a function of charged-particle multiplicity in photonuclear collisions

The measured $v_2$ and $v_3$ charged-particle anisotropies as a function of charged-particle transverse momentum in photonuclear collisions


Exclusive dimuon production in ultraperipheral Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Phys.Rev.C 104 (2021) 024906, 2021.
Inspire Record 1832628 DOI 10.17182/hepdata.104407

Exclusive dimuon production in ultraperipheral collisions (UPC), resulting from photon-photon interactions in the strong electromagnetic fields of colliding high-energy lead nuclei, $\mathrm{PbPb}(\gamma\gamma) \rightarrow \mu^+\mu^- (\mathrm{Pb}^{(\star)}\mathrm{Pb}^{(\star)} )$, is studied using $\mathcal{L}_{\mathrm{int}} = 0.48$ nb$^{-1}$ of $\sqrt{s_\mathrm{NN}}=5.02$ TeV lead-lead collision data at the LHC with the ATLAS detector. Dimuon pairs are measured in the fiducial region $p_{\mathrm{T}\mu} > 4$ GeV, $|\eta_{\mu}| < 2.4$, invariant mass $m_{\mu\mu} > 10$ GeV, and $p_{\mathrm{T,\mu\mu}} < 2$ GeV. The primary background from single-dissociative processes is extracted from the data using a template fitting technique. Differential cross sections are presented as a function of $m_{\mu\mu}$, absolute pair rapidity ($|y_{\mu\mu}|$), scattering angle in the dimuon rest frame ($|\cos \vartheta^{\star}_{\mu\mu}|$) and the colliding photon energies. The total cross section of the UPC $\gamma \gamma \rightarrow \mu^{+}\mu^{-}$ process in the fiducial volume is measured to be $\sigma_{\mathrm{fid}}^{\mu\mu} = 34.1 \! \pm \! 0.3 \mathrm{(stat.)} \! \pm \! 0.7 \mathrm{(syst.)}$ $\mu\mathrm{b}$. Generally good agreement is found with calculations from STARlight, which incorporate the leading-order Breit-Wheeler process with no final-state effects, albeit differences between the measurements and theoretical expectations are observed. In particular, the measured cross sections at larger $|y_{\mu\mu}|$ are found to be about 10-20% larger in data than in the calculations, suggesting the presence of larger fluxes of photons in the initial state. Modification of the dimuon cross sections in the presence of forward and/or backward neutron production is also studied and is found to be associated with a harder incoming photon spectrum, consistent with expectations.

41 data tables

Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $10 < |m_{\mu\mu}| < 20$ GeV.

Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $20 < |m_{\mu\mu}| < 40$ GeV.

Differential UPC dimuon cross sections shown as a function of $|y_{\mu\mu}|$ in the interval $40 < |m_{\mu\mu}| < 80$ GeV.

More…

Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb$^{-1}$ of Pb+Pb data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2021) 050, 2021.
Inspire Record 1811464 DOI 10.17182/hepdata.95747

This paper describes a measurement of light-by-light scattering based on Pb+Pb collision data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses $2.2$ nb$^{-1}$ of integrated luminosity collected in 2015 and 2018 at $\sqrt{s_\mathrm{NN}}=5.02$ TeV. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_{\mathrm{T}}^{\gamma} > 2.5$ GeV, pseudorapidity $|\eta_{\gamma}| < 2.37$, diphoton invariant mass $m_{\gamma\gamma} > 5$ GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The integrated and differential fiducial cross sections are measured and compared with theoretical predictions. The diphoton invariant mass distribution is used to set limits on the production of axion-like particles. This result provides the most stringent limits to date on axion-like particle production for masses in the range 6-100 GeV. Cross sections above 2 to 70 nb are excluded at the 95% CL in that mass interval.

11 data tables

Measured differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton invariant mass are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the theoretical uncertainty.

Measured normalised differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton invariant mass are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line).

Measured differential fiducial cross sections of $\gamma\gamma \rightarrow \gamma\gamma$ production in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for diphoton $|cos(\theta*)|$ are shown as points with error bars giving the statistical uncertainty and grey bands indicating the size of the total uncertainty. The results are compared with the prediction from the SuperChic v3.0 MC generator (solid line) with bands denoting the theoretical uncertainty.

More…

Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 807 (2020) 135595, 2020.
Inspire Record 1784454 DOI 10.17182/hepdata.95735

Azimuthal anisotropies of muons from charm and bottom hadron decays are measured in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}= 5.02$ TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2018 with integrated luminosities of $0.5~\mathrm{nb}^{-1}$ and $1.4~\mathrm{nb^{-1}}$, respectively. The kinematic selection for heavy-flavor muons requires transverse momentum $4 < p_\mathrm{T} < 30$ GeV and pseudorapidity $|\eta|<2.0$. The dominant sources of muons in this $p_\mathrm{T}$ range are semi-leptonic decays of charm and bottom hadrons. These heavy-flavor muons are separated from light-hadron decay muons and punch-through hadrons using the momentum imbalance between the measurements in the tracking detector and in the muon spectrometers. Azimuthal anisotropies, quantified by flow coefficients, are measured via the event-plane method for inclusive heavy-flavor muons as a function of the muon $p_\mathrm{T}$ and in intervals of Pb+Pb collision centrality. Heavy-flavor muons are separated into contributions from charm and bottom hadron decays using the muon transverse impact parameter with respect to the event primary vertex. Non-zero elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients are extracted for charm and bottom muons, with the charm muon coefficients larger than those for bottom muons for all Pb+Pb collision centralities. The results indicate substantial modification to the charm and bottom quark angular distributions through interactions in the quark-gluon plasma produced in these Pb+Pb collisions, with smaller modifications for the bottom quarks as expected theoretically due to their larger mass.

6 data tables

Summary of results for Inclusive HF muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

Summary of results for Inclusive HF muon v3 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

Summary of results for charm muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.

More…

Transverse momentum and process dependent azimuthal anisotropies in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 73, 2020.
Inspire Record 1762209 DOI 10.17182/hepdata.94802

The azimuthal anisotropy of charged particles produced in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of $165$ $\mathrm{nb}^{-1}$ that was collected in 2016. Azimuthal anisotropy coefficients, elliptic $v_2$ and triangular $v_3$, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum ($p_\mathrm{T}$) between $0.5$ and $50$ GeV. The $v_2$ results are also reported as a function of centrality in three different particle $p_\mathrm{T}$ intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet $p_\mathrm{T}$ thresholds are used. The anisotropies for particles with $p_\mathrm{T}$ less than about $2$ GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for $p_\mathrm{T}$ in the range $9$-$50$ GeV are not explained within current theoretical frameworks. In the $p_\mathrm{T}$ range $2$-$9$ GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.

45 data tables

Distribution of $v_{2}$ from MBT events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

Distribution of $v_{2}$ from $p_{T}^{jet}>75$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

Distribution of $v_{2}$ from $p_{T}^{jet}>100$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

More…

Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 082301, 2020.
Inspire Record 1752509 DOI 10.17182/hepdata.95128

The elliptic flow of muons from the decay of charm and bottom hadrons is measured in $pp$ collisions at $\sqrt{s}=13$ TeV using a data sample with an integrated luminosity of 150 pb$^{-1}$ recorded by the ATLAS detector at the LHC. The muons from heavy-flavor decay are separated from light-hadron decay muons using momentum imbalance between the tracking and muon spectrometers. The heavy-flavor decay muons are further separated into those from charm decay and those from bottom decay using the distance-of-closest-approach to the collision vertex. The measurement is performed for muons in the transverse momentum range 4-7 GeV and pseudorapidity range $|\eta|<2.4$. A significant non-zero elliptic anisotropy coefficient $v_{2}$ is observed for muons from charm decays, while the $v_{2}$ value for muons from bottom decays is consistent with zero within uncertainties.

4 data tables

Summary of results for inclusive muon v2 as a function of multiplicity. Uncertainties are statistical and systematic, respectively.

Summary of results for inclusive muon v2 as a function of pT. Uncertainties are statistical and systematic, respectively.

Summary of results for charm and bottom muon v2 as a function of multiplicity. Uncertainties are statistical and systematic, respectively.

More…

Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and $pp$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.C 100 (2019) 064901, 2019.
Inspire Record 1749578 DOI 10.17182/hepdata.91160

Studies of the fragmentation of jets into charged particles in heavy-ion collisions can provide information about the mechanism of jet-quenching by the hot and dense QCD matter created in such collisions, the quark-gluon plasma. This paper presents a measurement of the angular distribution of charged particles around the jet axis in $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV Pb+Pb and $pp$ collisions, using the ATLAS detector at the LHC. The Pb+Pb and $pp$ data sets have integrated luminosities of 0.49 nb$^{-1}$ and 25 pb$^{-1}$, respectively. The measurement is performed for jets reconstructed with the anti-$k_{t}$ algorithm with radius parameter $R = 0.4$ and is extended to an angular distance of $r= 0.8$ from the jet axis. Results are presented as a function of Pb+Pb collision centrality and distance from the jet axis for charged particles with transverse momenta in the 1$-$63 GeV range, matched to jets with transverse momenta in the 126$-$316 GeV range and an absolute value of jet rapidity of less than 1.7. Modifications to the measured distributions are quantified by taking a ratio to the measurements in $pp$ collisions. Yields of charged particles with transverse momenta below 4 GeV are observed to be increasingly enhanced as a function of angular distance from the jet axis, reaching a maximum at $r=0.6$. Charged particles with transverse momenta above 4 GeV have an enhanced yield in Pb+Pb collisions in the jet core for angular distances up to $r = 0.05$ from the jet axis, with a suppression at larger distances.

395 data tables

D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.

D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.

D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.

More…

Measurement of $W^\pm$ boson production in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 935, 2019.
Inspire Record 1746053 DOI 10.17182/hepdata.91908

A measurement of $W^\pm$ boson production in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of $0.49\;\mathrm{nb^{-1}}$. The $W^\pm$ bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying $W^\pm$ bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for $W^+$ and $W^-$ bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the $W^\pm$ boson production cross-sections measured in $pp$ collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for $W^-$ ($W^+$) bosons.

10 data tables

Differential normalised production yields for $W^+$ bosons as a function of absolute pseudorapidity of the charged lepton for the combined electron and muon channels. Systematic uncertainties related to $T_{\mathrm{AA}}$ are not included.

Differential normalised production yields for $W^-$ bosons as a function of absolute pseudorapidity of the charged lepton for the combined electron and muon channels. Systematic uncertainties related to $T_{\mathrm{AA}}$ are not included.

Combined result for lepton charge asymmetry.

More…

Measurement of flow harmonics correlations with mean transverse momentum in lead-lead and proton-lead collisions at $\sqrt{s_{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 985, 2019.
Inspire Record 1743581 DOI 10.17182/hepdata.93057

To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of $22 ~\mu b^{-1}$ and $28~nb^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the $2^{nd}$-, 3$^{rd}$-, and 4$^{th}$-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model.

51 data tables

The $c_{k}$ for the 0.5-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

The $c_{k}$ for the 0.5-5 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

The $c_{k}$ for the 1-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

More…

Fluctuations of anisotropic flow in Pb+Pb collisions at $ \sqrt{{\mathrm{s}}_{\mathrm{NN}}} $ = 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2020) 051, 2020.
Inspire Record 1728935 DOI 10.17182/hepdata.89325

Multi-particle azimuthal cumulants are measured as a function of centrality and transverse momentum using 470 $\mu$b$^{-1}$ of Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of harmonic flow coefficients $v_n$ and correlated fluctuations between two harmonics $v_n$ and $v_m$. For the first time, a non-zero four-particle cumulant is observed for dipolar flow, $v_1$. The four-particle cumulants for elliptic flow, $v_2$, and triangular flow, $v_3$, exhibit a strong centrality dependence and change sign in ultra-central collisions. This sign change is consistent with significant non-Gaussian fluctuations in $v_2$ and $v_3$. The four-particle cumulant for quadrangular flow, $v_4$, is found to change sign in mid-central collisions. Correlations between two harmonics are studied with three- and four-particle mixed-harmonic cumulants, which indicate an anti-correlation between $v_2$ and $v_3$, and a positive correlation between $v_2$ and $v_4$. These correlations decrease in strength towards central collisions and either approach zero or change sign in ultra-central collisions. To investigate the possible flow fluctuations arising from intrinsic centrality or volume fluctuations, the results are compared between two different event classes used for centrality definitions. In peripheral and mid-central collisions where the cumulant signals are large, only small differences are observed. In ultra-central collisions, the differences are much larger and transverse momentum dependent. These results provide new information to disentangle flow fluctuations from the initial and final states, as well as new insights on the influence of centrality fluctuations.

291 data tables

NchRec v.s. Et

<NchRec> w.r.t. Et

<Et> w.r.t. NchRec

More…

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 123 (2019) 052001, 2019.
Inspire Record 1728664 DOI 10.17182/hepdata.89399

This letter describes the observation of the light-by-light scattering process, $\gamma\gamma\rightarrow\gamma\gamma$, in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb$^{-1}$, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_{\textrm{T}}^{\gamma} > 3$ GeV and pseudorapidity $|\eta_{\gamma}| < 2.37$, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 $\pm$ 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 $\pm$ 13 (stat.) $\pm$ 7 (syst.) $\pm$ 3 (lumi.) nb.

3 data tables

The diphoton acoplanarity A$_{\phi}$ distribution for events satisfying the signal selection, but before the A$_{\phi} < 0.01$ requirement. Data points are compared with the signal and background expectations. Systematic uncertainties of the signal expectation process, excluding that of the luminosity, is shown as shaded band.

Diphoton transverse momentum for events satisfying the signal selection. Data (points) are compared with the sum of signal and background expectations (histograms). Systematic uncertainties of the signal expectation process, excluding that of the luminosity, is shown as shaded band.

Fiducial cross section for light-by-light scattering


Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

7 data tables

The measured cross sections for prompt, isolated photons with rapidity in (1.09,1.90).

The measured cross sections for prompt, isolated photons with rapidity in (−1.84,0.91).

The measured cross sections for prompt, isolated photons with rapidity in (−2.83,−2.02).

More…

Dijet azimuthal correlations and conditional yields in $pp$ and $p$+Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 100 (2019) 034903, 2019.
Inspire Record 1717481 DOI 10.17182/hepdata.93905

This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton ($pp$) and proton-lead ($p$+Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb$^{-1}$ of $pp$ data and 360 $\mu \mathrm{b}^{-1}$ of $p$+Pb data, both at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the LHC. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between $-$4.0 and 4.0 using the two highest transverse momentum jets in each event, with the highest transverse momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in $p$+Pb compared to $pp$ collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in $p$+Pb collisions to those in $pp$ collisions is suppressed by approximately 20%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets.

11 data tables

Unfolded azimuthal angular correlation distributions. Black markers represent p+Pb, red markers p+p

Unfolded width of azimuthal angular correlation distributions. Full markers represent p+Pb, open markers p+p

Unfolded Dijet conditional yields. Full markers represent p+Pb, open markers p+p

More…

Measurement of photon-jet transverse momentum correlations in 5.02 TeV Pb+Pb and $pp$ collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 789 (2019) 167-190, 2019.
Inspire Record 1694678 DOI 10.17182/hepdata.85369

Jets created in association with a photon can be used as a calibrated probe to study energy loss in the medium created in nuclear collisions. Measurements of the transverse momentum balance between isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb$^{-1}$ of Pb+Pb collision data at $\sqrt{s_\mathrm{NN}}=5.02$ TeV and 25 pb$^{-1}$ of $pp$ collision data at $\sqrt{s}=5.02$ TeV recorded with the ATLAS detector at the LHC. Photons with transverse momentum $63.1 < p_\mathrm{T}^{\gamma} < 200$ GeV and $\left|\eta^{\gamma}\right| < 2.37$ are paired inclusively with all jets in the event that have $p_\mathrm{T}^\mathrm{jet} > 31.6$ GeV and pseudorapidity $\left|\eta^\mathrm{jet}\right| < 2.8$. The transverse momentum balance given by the jet-to-photon $p_\mathrm{T}$ ratio, $x_\mathrm{J\gamma}$, is measured for pairs with azimuthal opening angle $\Delta\phi > 7\pi/8$. Distributions of the per-photon jet yield as a function of $x_\mathrm{J\gamma}$, $(1/N_\gamma)(\mathrm{d}N/\mathrm{d}x_\mathrm{J\gamma})$, are corrected for detector effects via a two-dimensional unfolding procedure and reported at the particle level. In $pp$ collisions, the distributions are well described by Monte Carlo event generators. In Pb+Pb collisions, the $x_\mathrm{J\gamma}$ distribution is modified from that observed in $pp$ collisions with increasing centrality, consistent with the picture of parton energy loss in the hot nuclear medium. The data are compared with a suite of energy-loss models and calculations.

6 data tables

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 63.1-79.6 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 79.6-100 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

Photon-jet pT balance distributions (1/Ng)(dN/dxJg) in pp events (blue, reproduced on all panels) and Pb+Pb events (red) with each panel denoting a different centrality selection. These panels show results with pTg = 100-158 GeV. Total systematic uncertainties are shown as boxes, while statistical uncertainties are shown with vertical bars.

More…

Measurement of the azimuthal anisotropy of charged particles produced in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 997, 2018.
Inspire Record 1686834 DOI 10.17182/hepdata.84427

Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $

456 data tables

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%

More…

Correlated long-range mixed-harmonic fluctuations measured in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 789 (2019) 444-471, 2019.
Inspire Record 1681154 DOI 10.17182/hepdata.83969

Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.

60 data tables

The symmetric cumulant $sc_{2,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

More…

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 790 (2019) 108-128, 2019.
Inspire Record 1673184 DOI 10.17182/hepdata.84819

Measurements of the yield and nuclear modification factor, $R_\mathrm{ AA}$, for inclusive jet production are performed using 0.49 nb$^{-1}$ of Pb+Pb data at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV and 25 pb$^{-1}$ of $pp$ data at $\sqrt{s}=5.02$ TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-$k_t$ algorithm with radius parameter $R=0.4$ and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering $|y|<2.8$. The magnitude of $R_\mathrm{ AA}$ increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of $R_\mathrm{ AA}$ also increases towards peripheral collisions. The value of $R_\mathrm{ AA}$ is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.

35 data tables

The ⟨TAA⟩ and ⟨Npart⟩ values and their uncertainties in each centrality bin.

No description provided.

No description provided.

More…