Strange hadron collectivity in pPb and PbPb collisions

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 007, 2023.
Inspire Record 2075415 DOI 10.17182/hepdata.115425

The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.

55 data tables

The elliptic flow $v_2\{4\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

The elliptic flow $v_2\{6\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

The elliptic flow $v_2\{8\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

More…

Pseudorapidity distributions of charged hadrons in proton-lead collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 and 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2018) 045, 2018.
Inspire Record 1632453 DOI 10.17182/hepdata.80150

The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range $|\eta_\mathrm{lab}| <$ 2.4. The charged-hadron multiplicity distributions are compared to the predictions from theoretical calculations and Monte Carlo event generators. In the center-of-mass pseudorapidity range $|\eta_\mathrm{cm}| < 0.5$, the average charged-hadron multiplicity densities $<\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta_{\mathrm{cm}}>$$\vert_{|\eta_{\mathrm{cm}}| < 0.5}$ are 17.31 $\pm$ 0.01 (stat) $\pm$ 0.59 (syst) and 20.10 $\pm$ 0.01 (stat) $\pm$ 0.85 (syst) at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.

1 data table

Distributions of the pseudorapidity density of charged hadrons in the region $|\eta_{\mathrm{lab}}|<2.4$ in non-single-diffractive pPb collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 5.02$ (open squares) and 8.16 TeV (full squares). The systematic uncertainties are correlated between the two beam energies. The proton beam goes in the positive $|\eta_{\mathrm{lab}}|$ direction.


Observation of correlated azimuthal anisotropy Fourier harmonics in pp and pPb collisions at the LHC

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 092301, 2018.
Inspire Record 1626103 DOI 10.17182/hepdata.79667

The azimuthal anisotropy Fourier coefficients ($v_n$) in 8.16 TeV pPb data are extracted via long-range two-particle correlations as a function of event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, $v_n$ correlations are measured for the first time in pp and pPb collisions. The $v_2$ and $v_4$ coefficients are found to be positively correlated in all collision systems. For high multiplicity pPb collisions an anticorrelation of $v_2$ and $v_3$ is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in pPb and PbPb collisions in the measured multiplicity range.

9 data tables

The $v_{n}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. Results after low-multiplicity subtraction are denoted as $v_{n}^{sub}$.

The $v_{n}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in pPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV. Results after low-multiplicity subtraction are denoted as $v_{n}^{sub}$.

The $v_{4}$ result from 2-particle correlation as a function of multiplicity ($N_{trk}^{offline}$) in pp collisions at $\sqrt{s}$ = 13.00 TeV. Results after low-multiplicity subtraction are denoted as $v_{4}^{sub}$.

More…

Measurement of long-range near-side two-particle angular correlations in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 172302, 2016.
Inspire Record 1397173 DOI 10.17182/hepdata.73192

Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 inverse nanobarns. The correlations are studied over a broad range of pseudorapidity (abs(eta) < 2.4) and over the full azimuth (phi) as a function of charged particle multiplicity and transverse momentum (pt). In high-multiplicity events, a long-range (abs(Delta eta) > 2.0), near-side (Delta phi approximately 0) structure emerges in the two-particle Delta eta-Delta phi correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 < pt < 2.0 GeV/c and an approximately linear increase with the charged particle multiplicity, with an overall correlation strength similar to that found in earlier pp data at sqrt(s) = 7 TeV. The present measurement extends the study of near-side long-range correlations up to charged particle multiplicities of N[ch] approximately 180, a region so far unexplored in pp collisions. The observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.

38 data tables

Correlated yield obtained with the ZYAM procedure as a function of $|\Delta\Phi|$, averaged over 2 $<|\Delta\eta|<$ 4 in for 0.1 $<p_{T}<$ 1.0 $GeV/c$ and $N_{offline}^{trk}<$ 35 bins for pp data at $\sqrt =$ 13 $TeV$. The $p_{T}$ selection applies to both particles in the pair. Only statistical uncertainties are given. The subtracted ZYAM constant is given ($C_{ZYAM}$).

Correlated yield obtained with the ZYAM procedure as a function of $|\Delta\Phi|$, averaged over 2 $<|\Delta\eta|<$ 4 in for 0.1 $<p_{T}<$ 1.0 $GeV/c$ and $N_{offline}^{trk}<$ 35 bins for pp data at $\sqrt =$ 7 $TeV$. The $p_{T}$ selection applies to both particles in the pair. Only statistical uncertainties are given. The subtracted ZYAM constant is given ($C_{ZYAM}$).

Correlated yield obtained with the ZYAM procedure as a function of $|\Delta\Phi|$, averaged over 2 $<|\Delta\eta|<$ 4 in for 1.0 $<p_{T}<$ 2.0 $GeV/c$ and $N_{offline}^{trk}<$ 35 bins for pp data at $\sqrt =$ 13 $TeV$. The $p_{T}$ selection applies to both particles in the pair. Only statistical uncertainties are given. The subtracted ZYAM constant is given ($C_{ZYAM}$).

More…

Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.C 92 (2015) 034911, 2015.
Inspire Record 1347386 DOI 10.17182/hepdata.67151

A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pt and eta of both particles, and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at sqrt(s[NN]) = 2.76 TeV and pPb collisions at sqrt(s[NN]) = 5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pt and eta. When measured with particles of different pt, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different eta. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very high-multiplicity pPb collisions. The eta-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

162 data tables

The $p_{T}$-dependent factorization ratio, $r_{2}$, as a function of $p^{a}_{T} - p^{b}_{T}$ for $1.0<p^{trig}_{T}<1.5$ GeV/c for centrality 0-0.2% in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV.

The $p_{T}$-dependent factorization ratio, $r_{2}$, as a function of $p^{a}_{T} - p^{b}_{T}$ for $1.5<p^{trig}_{T}<2.0$ GeV/c for centrality 0-0.2% in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV.

The $p_{T}$-dependent factorization ratio, $r_{2}$, as a function of $p^{a}_{T} - p^{b}_{T}$ for $2.0<p^{trig}_{T}<2.5$ GeV/c for centrality 0-0.2% in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV.

More…

Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 742 (2015) 200-224, 2015.
Inspire Record 1315947 DOI 10.17182/hepdata.66784

Measurements of two-particle angular correlations between an identified strange hadron (K0S or Lambda/anti-Lambda) and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 inverse nanobarns, were collected at a nucleon-nucleon center-of-mass energy (sqrt(s[NN])) of 5.02 TeV with the CMS detector at the LHC. The results are compared to semi-peripheral PbPb collision data at sqrt(s[NN]) = 2.76 TeV, covering similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative pseudorapidity are used to extract the second-order (v[2]) and third-order (v[3]) anisotropy harmonics of K0S and Lambda/anti-Lambda particles. These quantities are studied as a function of the charged-particle multiplicity in the event and the transverse momentum of the particles. For high-multiplicity pPb events, a clear particle species dependence of v[2] and v[3] is observed. For pt < 2 GeV, the v[2] and v[3] values of K0S particles are larger than those of Lambda/anti-Lambda particles at the same pt. This splitting effect between two particle species is found to be stronger in pPb than in PbPb collisions in the same multiplicity range. When divided by the number of constituent quarks and compared at the same transverse kinetic energy per quark, both v[2] and v[3] for K0S particles are observed to be consistent with those for Lambda/anti-Lambda particles at the 10% level in pPb collisions. This consistency extends over a wide range of particle transverse kinetic energy and event multiplicities.

68 data tables

The elliptic flow v2(2, $|\Delta\eta| > 2$) extracted for all charged particles as a function of $p_{T}$ from the correlation in the $N_{offline}^{trk}$ < 35 multiplicity class in pPb.

The elliptic flow v2(2, $|\Delta\eta| > 2$) extracted for all charged particles as a function of $p_{T}$ from the correlation in the 35 $\leq N_{offline}^{trk}$ < 60 multiplicity class in pPb.

The elliptic flow v2(2, $|\Delta\eta| > 2$) extracted for all charged particles as a function of $p_{T}$ from the correlation in the 60 $\leq N_{offline}^{trk}$ < 120 multiplicity class in pPb.

More…

Charged particle nuclear modification factor and pseudorapidity asymmetry in pPb collisions at sqrt(sNN)=5.02 TeV with CMS

The CMS collaboration
2013.
Inspire Record 1263706 DOI 10.17182/hepdata.66742

The charged particle transverse momentum spectra in the midrapidity and forward pseudorapidity ranges are presented for pPb collisions at $\sqrt{s_{\rm NN}}=5.02$~TeV. The data sample corresponding to an integrated luminosity of 26~${\rm nb}^{-1}$ was collected with the CMS detector at the LHC. The nuclear modification factor is measured at midrapidity by normalizing the measured pPb spectrum to a pp reference spectrum constructed from previous measurements. In addition, the asymmetries in the charged particle yields between equivalent positive and negative pseudorapidity ranges in the center-of-mass frame are presented as a function of transverse momentum.

11 data tables

Invariant charged particle differential yield.

Invariant charged particle differential yield.

Invariant charged particle differential yield.

More…