Measurement of the single top quark and antiquark production cross sections in the t channel and their ratio in pp collisions at sqrt(s)=13 TeV

The CMS collaboration
CMS-PAS-TOP-17-011, 2018.
Inspire Record 1680899 DOI 10.17182/hepdata.85704

The cross sections for the production of single top quarks and antiquarks in the $t$ channel, and their ratio, are measured in proton-proton collisions at a center-of-mass energy of $13~\mathrm{TeV}$. The full data set recorded in 2016 by the CMS detector at the LHC is analyzed, corresponding to an integrated luminosity of $35.9~\mathrm{fb}^{-1}$. Events with one muon or electron and two jets are selected, where one of the two jets is identified as originating from a bottom quark. A multivariate discriminator exploiting several kinematic variables is applied to separate signal from background events. The ratio $R_{t\mathrm{\text{-}ch.}}$ of the cross sections is measured to be $1.65 \pm0.02\,\text{(stat)} \pm0.04\,\text{(syst)}$. The total cross section for the production of single top quarks or antiquarks is measured to be $219.0 \pm1.5\,\text{(stat)} \pm33.0\,\text{(syst)} \,\mathrm{pb}$ and the absolute value of the CKM matrix element $V_{\mathrm{tb}}$ is determined to be $1.00 \pm0.05\,\text{(exp)} \pm0.02 \,\text{(theo)}$. All results are in agreement with the standard model predictions.

7 data tables

The measured cross section of top quark production in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

The measured cross section of top antiquark production in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

The measured inclusive cross section of production of the top quarks and antiquarks in $t$-channel. The first uncertainty is the statistical, the second is due to profiled systematic sources, the third is due to the sources describing signal modelling (externalized), and the last due to the integrated luminosity (externalized).

More…