Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-21-009, 2024.
Inspire Record 2750408 DOI 10.17182/hepdata.146028

The inclusive jet cross section is measured as a function of jet transverse momentum $p_\mathrm{T}$ and rapidity $y$. The measurement is performed using proton-proton collision data at $\sqrt{s}$ = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb$^{-1}$. The jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm using a distance parameter of $R$ = 0.4, within the rapidity interval $\lvert y\rvert$$\lt$ 2, and across the kinematic range 0.06 $\lt$$p_\mathrm{T}$$\lt$ 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling $\alpha_\mathrm{S}$.

32 data tables

The JEC, JER, and total systematic uncertainties in unfolded cross sections as functions of transverse momentum, for |y|<0.5. The total systematic uncertainty includes also the luminosity, jet identification and trigger efficiency uncertainties.

The JEC, JER, and total systematic uncertainties in unfolded cross sections as functions of transverse momentum, for 0.5<|y|<1. The total systematic uncertainty includes also the luminosity, jet identification and trigger efficiency uncertainties.

The JEC, JER, and total systematic uncertainties in unfolded cross sections as functions of transverse momentum, for 1<|y|<1.5. The total systematic uncertainty includes also the luminosity, jet identification and trigger efficiency uncertainties.

More…

Version 2
Measurement of the top quark pole mass using $\mathrm{t\bar{t}}$+jet events in the dilepton final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 077, 2023.
Inspire Record 2106483 DOI 10.17182/hepdata.127990

A measurement of the top quark pole mass $m_\mathrm{t}^\text{pole}$ in events where a top quark-antiquark pair ($\mathrm{t\bar{t}}$) is produced in association with at least one additional jet ($\mathrm{t\bar{t}}$+jet) is presented. This analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb$^{-1}$. Events with two opposite-sign leptons in the final state (e$^+$e$^-$, $\mu^+\mu^-$, e$^\pm\mu^\mp$) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $\mathrm{t\bar{t}}$+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $m_\mathrm{t}^\text{pole}$ = 172.93 $\pm$ 1.36 GeV.

10 data tables

Absolute differential cross section as a function of the rho observable at parton level.

Covariance matrix for the total uncertainty (i.e. fit including stat., not extrapolation) for the measurement of the absolute differential cross section as a function of the rho observable at parton level.

Covariance matrix for the statistical uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.

More…

Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 107, 2022.
Inspire Record 1961177 DOI 10.17182/hepdata.105865

Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9 $_{-7.3}^{+7.5}$ (stat) $_{-6.0}^{+7.3}$ (syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37 $_{-0.42}^{+0.56}$ (stat) ${}_{-0.13}^{+0.27}$ (syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 $\pm$ 0.16 (stat) $\pm$ 0.06 (syst), in agreement with SM predictions.

73 data tables

Numerical results of inclusive cross section measurements. Each row represents a measurement: "tZq" for fully inclusive, "tZq_top" for the top quark channel, "tZq_antitop" for the top antiquark channel, "ratio" for the ratio measurement. The columns are the central value, statistical error up/down, systematic error up/down. All values are in fb, except for the ratio (dimensionless).

Numerical representation of impact plot.

Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 2-3 jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the prefit version.

More…

Measurement of differential $\text{t}\overline{\text{t}}$ production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 092013, 2021.
Inspire Record 1901295 DOI 10.17182/hepdata.102956

Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.

362 data tables

differential cross sections.

differential cross sections.

differential cross sections.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $\tau$ leptons in pp collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 081805, 2022.
Inspire Record 1894790 DOI 10.17182/hepdata.105961

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the $\tau$ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event if any. The analysis is performed using proton-proton data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two $\tau$ leptons, and they constitute a significant improvement over measurements in other final states in events with a large jet multiplicity or with a Lorentz-boosted Higgs boson.

7 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each jet multiplicity bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each leading jet pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2021) 003, 2021.
Inspire Record 1805274 DOI 10.17182/hepdata.100162

Measurement of the fiducial inclusive and differential production cross sections of the Higgs boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV are performed using events where the Higgs boson decays into a pair of W bosons that subsequently decay into a final state with an electron, a muon, and a pair of neutrinos. The analysis is based on data collected with the CMS detector at the LHC during 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Production cross sections are measured as a function of the transverse momentum of the Higgs boson and the associated jet multiplicity. The Higgs boson signal is extracted and simultaneously unfolded to correct for selection efficiency and resolution effects using maximum-likelihood fits to the observed distributions in data. The integrated fiducial cross section is measured to be 86.5 $\pm$ 9.5 fb, consistent with the Standard Model expectation of 82.5 $\pm$ 4.2 fb. No significant deviation from the Standard Model expectations is observed in the differential measurements.

5 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengthes are given. For the regularized case the uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The regularization estimated bias (bias) is also given. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The correlation matrix for the ptH measurements, both for the unregularized and regularized fits. The last bin is inclusive.

The fiducial differential signal strength and cross section in each njet bin. The uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Measurement of the $\Upsilon$(1S) pair production cross section and search for resonances decaying to $\Upsilon$(1S)$\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 808 (2020) 135578, 2020.
Inspire Record 1780982 DOI 10.17182/hepdata.93921

The fiducial cross section for $\Upsilon$(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both $\Upsilon$(1S) mesons have an absolute rapidity below 2.0 is measured to be 79 $\pm$ 11 (stat) $\pm$ 6 (syst) $\pm$ 3 ($\mathcal{B}$) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the $\Upsilon$(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. This process serves as a standard model reference in a search for narrow resonances decaying to $\Upsilon$(1S)$\mu^+\mu^-$ in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two $\bar{\mathrm{b}}$ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate $\Upsilon$(1S) resonance are set as a function of the resonance mass.

9 data tables

The fiducial cross section measured in bins of the absolute rapidity difference between the mesons for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

The fiducial cross section measured in bins of the invariant mass of the two mesons for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

The fiducial cross section measured in bins of the transverse momentum of the meson pair for events in the fiducial region with 2 Y(1S) with absolute rapidity less than 2.0.

More…

Measurement of differential cross sections and charge ratios for $t$-channel single top quark production in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 370, 2020.
Inspire Record 1744604 DOI 10.17182/hepdata.93068

A measurement is presented of differential cross sections for $t$-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 TeV by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$, events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ($p_\mathrm{T}$), rapidity, and polarisation angle, the charged lepton $p_\mathrm{T}$ and rapidity, and the $p_\mathrm{T}$ of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 $\pm$ 0.070, in agreement with the standard model prediction.

69 data tables

Differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$

Covariance of the differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$

Differential absolute cross section as a function of the parton-level top quark rapidity

More…

Measurement of associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 269, 2019.
Inspire Record 1705068 DOI 10.17182/hepdata.89879

Measurements are presented of associated production of a W boson and a charm quark (W+c) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 35.7 fb$^{-1}$ collected by the CMS experiment at the CERN LHC. The W bosons are identified by their decay into a muon and a neutrino. The charm quarks are tagged via the full reconstruction of D$^*$(2010)$^\pm$ mesons that decay via D$^*$(2010)$^\pm \to$ D$^0$ + $\pi^\pm \to$ K$^{\mp}$ + $\pi^\pm$ + $\pi^\pm$. A cross section is measured in the fiducial region defined by the muon transverse momentum $p_{T}^{\mu} >$ 26 GeV, muon pseudorapidity $|\eta^{\mu}| <$ 2.4, and charm quark transverse momentum $p_{T}^{c} >$ 5 GeV. The inclusive cross section for this kinematic range is $\sigma$(W+c) = 1026 $\pm$ 31 (stat) $\substack{+76\\-72}$ (syst) pb. The cross section is also measured differentially as a function of the pseudorapidity of the muon from the W boson decay. These measurements are compared with theoretical predictions and are used to probe the strange quark content of the proton.

6 data tables

The differential measurement of W + charm as a function of the absolute peudorapidity of the muon originating from the W boson.

The differential measurement of W+ + cbar as a function of the absolute peudorapidity of the muon originating from the W boson.

The differential measurement of W- + c as a function of the absolute peudorapidity of the muon originating from the W boson.

More…

Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s} =$ 13 TeV using events containing two leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2019) 149, 2019.
Inspire Record 1703993 DOI 10.17182/hepdata.89307

Measurements of differential top quark pair $\mathrm{t\overline{t}}$ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $\mathrm{t\overline{t}}$ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $\mathrm{t\overline{t}}$ and leptonic charge asymmetries.

188 data tables

Measured absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Covariance matrix of the absolute differential cross section at parton level as a function of $p_{T}^{t}$.

Measured normalised differential cross section at parton level as a function of $p_{T}^{t}$.

More…