Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 84 (2024) 27, 2024.
Inspire Record 2685711 DOI 10.17182/hepdata.141611

The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio $R^\pm_\text{c}$ = $\sigma$(W$^+$+$\bar{\text{c}}$) / $\sigma$(W$^-$+$\text{c}$) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$ = 0.950 $\pm$ 0.005 (stat) $\pm$ 0.010 (syst). The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.

13 data tables

Particle level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.

Parton level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.

Inclusive cross section predictions at QCD NLO accuracy from MCFM using different PDF sets

More…

Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2024) 173, 2024.
Inspire Record 2684710 DOI 10.17182/hepdata.142036

A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ($\mathrm{b\bar{b}}$) is presented using proton-proton collision data recorded by the CMS experiment at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb$^{-1}$. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be $\mu^\text{qqH}_\mathrm{Hb\bar{b}}$ = 1.01 $^{+0.55}_{-0.46}$. The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be $\mu^\text{incl.}_\mathrm{Hb\bar{b}}$ = 0.99 $^{+0.48}_{-0.41}$, corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.

4 data tables

The mbb distribution after weighted combination of all categories in the analysis weighted with S/(S + B). where S is the total Hbb signal yield (both VBF and ggH) and B is the total background yield including QCD multijet and Z+jets

The best fit values of the signal strength modifier for the different processes. The uncertainties, corresponding to one standard deviation confidence intervals, include both statistical and systematic sources. The additional breakdown of the uncertainties into their separate statistical and systematic contributions is also shown.

The best fit values of the signal strength modifier for the different processes by floating the VBF and ggH production rates independently. The uncertainties, corresponding to one standard deviation confidence intervals, include both statistical and systematic sources. The additional breakdown of the uncertainties into their separate statistical and systematic contributions is also shown.

More…

Search for a high-mass dimuon resonance produced in association with b quark jets at $\sqrt{s}$=13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2023) 043, 2023.
Inspire Record 2678141 DOI 10.17182/hepdata.141455

A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z$'$ boson couplings to a bb quark pair ($g_\mathrm{b}$), an sb quark pair ($g_\mathrm{b}\delta_\mathrm{bs}$), and any same-flavor charged lepton ($g_\ell$) or neutrino pair ($g_\nu$), with $\left|g_{\nu}\right| = \left|g_\ell\right|$. For a Z$'$ boson with a mass $m_{\mathrm{Z}'}$ = 350 GeV (2 TeV) and $\left|\delta_\mathrm{bs}\right|$$\lt$ 0.25, the majority of the parameter space with 0.0057 $\lt$$\left|g_\ell\right|$$\lt$ 0.35 (0.25 $\lt$$\left|g_\ell\right|$$\lt$ 0.43) and 0.0079 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.46 (0.34 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z$'$ model with parameters consistent with low-energy b $\to$ s$\ell\ell$ measurements. In this scenario, most of the allowed parameter space is excluded for a Z$'$ boson with 350 $\lt m_{\mathrm{Z}'}$ $\lt$ 500 GeV, while the constraints are less stringent for higher $m_{\mathrm{Z}'}$ hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.

69 data tables

Feynman diagrams of $\mathrm{Z'}\to\mu^{-}\mu^{+}$ with a $\mathrm{Z'}$ boson produced via $\mathrm{b}\overline{\mathrm{b}}\to\mathrm{Z'}$, with one $\mathrm{b}$ quark in the final state.

Feynman diagrams of $\mathrm{Z'}\to\mu^{-}\mu^{+}$ with a $\mathrm{Z'}$ boson produced via $\mathrm{s}\overline{\mathrm{b}}\to\mathrm{Z'}$, with one $\mathrm{b}$ quark in the final state.

Feynman diagrams of $\mathrm{Z'}\to\mu^{-}\mu^{+}$ with a $\mathrm{Z'}$ boson produced via $\mathrm{b}\overline{\mathrm{b}}\to\mathrm{Z'}$, with two $\mathrm{b}$ quarks in the final state.

More…

Observation of new structure in the J/$\psi$J/$\psi$ mass spectrum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 111901, 2024.
Inspire Record 2668013 DOI 10.17182/hepdata.141028

A search is reported for near-threshold structures in the J/$\psi$J/$\psi$ invariant mass spectrum produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135 fb$^{-1}$. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a significance above 5 standard deviations at a mass of 6638 $^{+43}_{-38}$ (stat) $^{+16}_{-31}$ (syst) MeV. Another structure with even higher significance is found at a mass of 6847 $^{+44}_{-28}$ (stat) $^{+48}_{-20}$ (syst) MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.7 standard deviations, is found at a mass of 7134 $^{+48}_{-25}$ (stat) $^{+41}_{-15}$ (syst) MeV. Results are also reported for a model without interference, which does not fit the data as well and shows mass shifts up to 150 MeV relative to the model with interference.

2 data tables

The mass (m) and natural widths (Γ) from the fits to the $\mathrm{J}/\psi\mathrm{J}/\psi$ mass distribution, for both the non-interference model and the interference model. The signal yields N for the non-interference model are given for the three signal structures.

The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data


Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the e$\mu$ final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 108 (2023) 072004, 2023.
Inspire Record 2663255 DOI 10.17182/hepdata.139722

A search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons with a mass in the range 110-160 GeV to an e$^{\pm}\mu^{\mp}$ pair is presented. The search is performed with a proton-proton collision dataset at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. No excess is observed for the Higgs boson. The observed (expected) upper limit on the e$^{\pm}\mu^{\mp}$ branching fraction for it is determined to be 4.4 (4.7) $\times$ 10$^{-5}$ at 95% confidence level, the most stringent limit set thus far from direct searches. The largest excess of events over the expected background in the full mass range of the search is observed at an e$^{\pm}\mu^{\mp}$ invariant mass of approximately 146 GeV with a local (global) significance of 3.8 (2.8) standard deviations.

23 data tables

Observed (expected) 95% confidence level upper limits on $\mathcal{B}(H \to e \mu)$ for each individual analysis category (as shown in the left axis label) and for the combination of all analysis categories.

Observed (expected) 95% confidence level upper limits on $\sigma(p p \to X \to e \mu)$ as functions of the hypothesised $m_{X}$ assuming the relative SM-like production cross sections of the ggH and VBF production modes.

Observed local $\textit{p}$-values against the background-only hypothesis are shown as a function of the hypothesised $m_{X}$.

More…

Observation of four top quark production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 847 (2023) 138290, 2023.
Inspire Record 2661880 DOI 10.17182/hepdata.138420

The observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016-2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.7 $^{+3.7}_{-3.5}$ (stat) $^{+2.3}_{-1.9}$ (syst) fb, in agreement with the available standard model predictions.

2 data tables

Comparison of fit results in the channels individually and in their combination. The left panel shows the values of the measured cross section relative to the SM prediction from Ref. [6]. The right panel shows the expected and observed significance, with the printed values rounded to the first decimal.

Number of predicted and observed events in the SR-2$\ell$ and SR-3$\ell$ $t\bar{t}t\bar{t}$ classes, both before the fit to the data ("prefit") and with their best fit normalizations ("postfit"). The uncertainties in the predicted number of events include both the statistical and systematic components. The uncertainties in the total number of predicted background and background plus signal events are also given.


Search for inelastic dark matter in events with two displaced muons and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 041802, 2024.
Inspire Record 2661228 DOI 10.17182/hepdata.140434

A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb$^{-1}$ of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section $\sigma$(pp $\to$ A' $\to$$\chi_1$$\chi_2$) and the decay branching fraction $\mathcal{B}$($\chi_2$$\to$$\chi_1 \mu^+ \mu^-$), where A' is a dark photon and $\chi_1$ and $\chi_2$ are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.

6 data tables

Definition of ABCD bins and yields in data, per match category. The predicted yield in the bin with the smallest backgrounds (bin D) is extracted from the simultaneous four-bin fit by assuming zero signal, which corresponds to $(\text{Obs. B} \times \text{Obs. C}) / (\text{Obs. A})$ in this limit.

Systematic uncertainties in the analysis. The jet uncertainties are larger in 2017 because of noise issues with the ECAL endcap. The tracking inefficiency in 2016 is caused by the unexpected saturation of photodiode signals in the tracker.

Simulated muon reconstruction efficiency of standard (blue squares) and displaced (red circles) reconstruction algorithms as a function of transverse vertex displacement $v_{xy}$. The two dashed vertical gray lines denote the ends of the fiducial tracker and muon detector regions, respectively.

More…

Search for resonances in events with photon and jet final states in proton-proton collisions at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2023) 189, 2023.
Inspire Record 2659689 DOI 10.17182/hepdata.139903

A search for resonances in events with the $\gamma$+jet final state has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC. The total data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$. Models of excited quarks and quantum black holes are considered. Using a wide-jet reconstruction for the candidate jet, the $\gamma$+jet invariant mass spectrum measured in data is examined for the presence of resonances over the standard model continuum background. The background is estimated by fitting the mass distribution with a functional form. The data exhibit no statistically significant deviations from the expected standard model background. Exclusion limits at 95% confidence level on the resonance mass and other parameters are set. Excited light-flavor quarks (excited bottom quarks) are excluded up to a mass of 6.0 (3.8) TeV. Quantum black hole production is excluded for masses up to 7.5 (5.2) TeV in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model. These lower mass bounds are the most stringent to date among those obtained in the $\gamma$+jet final state.

30 data tables

The signal cross-sections values of the signals q* with coupling mupltiplier f =1.0 and f = 0.5, as a function of resonance mass

The signal cross-sections values of the signals b* with coupling mupltiplier f =1.0 and f = 0.5, as a function of resonance mass

The signal cross-sections values of the signal QBH ADD with n=6 extra dimensions, as a function of threshold mass

More…

Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2023) 040, 2023.
Inspire Record 2659285 DOI 10.17182/hepdata.140341

Measurements of the inclusive and differential fiducial cross sections for the Higgs boson production in the H → ZZ → 4ℓ (ℓ = e, μ) decay channel are presented. The results are obtained from the analysis of proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{−1}$. The measured inclusive fiducial cross section is 2.73 ± 0.26 fb, in agreement with the standard model expectation of 2.86 ± 0.1 fb. Differential cross sections are measured as a function of several kinematic observables sensitive to the Higgs boson production and decay to four leptons. A set of double-differential measurements is also performed, yielding a comprehensive characterization of the four leptons final state. Constraints on the Higgs boson trilinear coupling and on the bottom and charm quark coupling modifiers are derived from its transverse momentum distribution. All results are consistent with theoretical predictions from the standard model.

113 data tables

Differential cross section measurements in bins of mass4l (v3)

Differential cross section measurements in bins of mass4l_zzfloating (v3)

Differential cross section measurements in bins of njets_pt30_eta4p7 (v3)

More…

Version 2
Observation of the rare decay of the $\eta$ meson to four muons

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 131 (2023) 091903, 2023.
Inspire Record 2657654 DOI 10.17182/hepdata.140340

A search for the rare $\eta$$\to$$\mu^+\mu^-\mu^+\mu^-$ double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers in 2017-2018 and corresponding to an integrated luminosity of 101 fb$^{-1}$. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the $\eta$$\to$$\mu^+ \mu^-$ decay as normalization, the branching fraction $\mathcal{B}(\eta$$\to$$\mu^+\mu^-\mu^+\mu^-)$ = [5.0 $\pm$ 0.8 (stat) $\pm$ 0.7 (syst) $\pm$ 0.7 ($\mathcal{B}_{2\mu}$)] $\times$ 10$^{-9}$ is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over five orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions.

6 data tables

The total efficiencies for the four-muon ($A_{4\mu}^{i,j}$, red and blue points) and two-muon ($A_{2\mu}^{i,j}$, orange and green points) decay channels, as functions of the generated meson's $p_{\mathrm{T}}$ and $y$, evaluated through MC simulation.

The total efficiencies for the four-muon ($A_{4\mu}^{i,j}$, red and blue points) and two-muon ($A_{2\mu}^{i,j}$, orange and green points) decay channels, as functions of the generated meson's $p_{\mathrm{T}}$ and $y$, evaluated through MC simulation.

Measured ratio of $\mathcal{B}_{4\mu}/\mathcal{B}_{2\mu}$

More…