First measurement of $\Lambda_\mathrm{c}^{+}$ production down to $p_\mathrm{T} = 0$ in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV

The ALICE collaboration
CERN-EP-2022-261, 2022.
Inspire Record 2593302 DOI 10.17182/hepdata.140485

The production of prompt $\mathrm {\Lambda_{c}^{+}}$ baryons has been measured at midrapidity in the transverse momentum interval $0<p_{\rm T}<1$ GeV/$c$ for the first time, in pp and p-Pb collisions at a centre-of-mass energy per nucleon-nucleon collision $\sqrt{s_\mathrm{NN}} = 5.02$ TeV. The measurement was performed in the decay channel ${\rm \Lambda_{c}^{+}\to p K^{0}_{S}}$ by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The $p_{\rm T}$-integrated $\mathrm {\Lambda_{c}^{+}}$ production cross sections in both collision systems were determined and used along with the measured yields in Pb-Pb collisions to compute the $p_{\rm T}$-integrated nuclear modification factors $R_{\rm pPb}$ and $R_\mathrm{AA}$ of $\mathrm{\Lambda_{c}^{+}}$ baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The $\mathrm{\Lambda_{c}^{+}/D^0}$ baryon-to-meson yield ratio is reported for pp and p-Pb collisions. Comparisons with models that include modified hadronisation processes are presented, and the implications of the results on the understanding of charm hadronisation in hadronic collisions are discussed. A significant ($3.7\sigma$) modification of the mean transverse momentum of $\mathrm {\Lambda_{c}^{+}}$ baryons is seen in p-Pb collisions with respect to pp collisions, while the $p_{\rm T}$-integrated $\mathrm{\Lambda_{c}^{+}/D^0}$ yield ratio was found to be consistent between the two collision systems within the uncertainties.

9 data tables

The $p_\mathrm{T}$-differential prompt $\Lambda_\mathrm{c}^{+}$ production cross sections per unit rapidity in pp collisions for $|y| < 0.5$, at $\sqrt{s} = 5.02$ TeV. Data for $1<p_\mathrm{T} < 12$ GeV/$c$ from Phys.Rev.Lett. 127 (2021) 202301, 2021, https://www.hepdata.net/record/ins1829739.

The $p_\mathrm{T}$-differential prompt $\Lambda_\mathrm{c}^{+}$ production cross sections per unit rapidity in p-Pb collisions for $-0.96<y_\mathrm{cms}<0.04$, at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV. Data for $1<p_\mathrm{T} < 24$ GeV/$c$ from Phys.Rev.Lett. 127 (2021) 202301, 2021, https://www.hepdata.net/record/ins1829739.

The $p_\mathrm{T}$-integrated production cross sections per unit rapidity for prompt $\Lambda_\mathrm{c}^{+}$ baryons in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.

More…

$\rm \Lambda_{c}^{+}$ production and baryon-to-meson ratios in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 202301, 2021.
Inspire Record 1829739 DOI 10.17182/hepdata.114213

The prompt production of the charm baryon $\rm \Lambda_{c}^{+}$ and the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$TeV. These new measurements show a clear decrease of the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ ratio with increasing transverse momentum ($p_{\rm T}$) in both collision systems in the range $2<p_{\rm T}<12$ GeV/$c$, exhibiting similarities with the light-flavour baryon-to-meson ratios ${\rm p}/\pi$ and $\Lambda/\mathrm {K^0_S}$. At low $p_{\rm T}$, predictions that include additional colour-reconnection mechanisms beyond the leading-colour approximation; assume the existence of additional higher-mass charm-baryon states; or include hadronisation via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in $\mathrm {e^+e^-}$ and $\mathrm {e^-p}$ collisions significantly underestimate the data. The results presented in this letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.

8 data tables

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section in pp collisions at $\sqrt{s} = 5.02$ TeV in the rapidity interval $|y|<0.5$.

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.

The nuclear modification factor $R_\mathrm{pPb}$ of prompt $\Lambda_{\rm {c}}^{+}$ baryons in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $ -0.96\lt y \lt 0.04$.

More…

Centrality dependence of inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 11 (2015) 127, 2015.
Inspire Record 1380193 DOI 10.17182/hepdata.69212

We present a measurement of inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, $p_{\rm T}$, in the backward ($-4.46 < y_{\rm cms} < -2.96$) and forward ($2.03 < y_{\rm cms} < 3.53$) rapidity intervals in the dimuon decay channel and in the mid-rapidity region ($-1.37 < y_{\rm cms} < 0.43$) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The $p_{\rm T}$-differential J/$\psi$ production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average $p_{\rm T}$ and $p^2_{\rm T}$ values. The nuclear modification factor, $Q_{\rm pPb}$, is presented as a function of centrality for the three rapidity intervals, and, additionally, at backward and forward rapidity, as a function of $p_{\rm T}$ for several centrality classes. At mid- and forward rapidity, the J/$\psi$ yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing $p_{\rm T}$ of the J/$\psi$. At backward rapidity, the $Q_{\rm pPb}$ is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions.

11 data tables

Differential cross sections dsigma_JPsi/dydpt as function of pt at backward (-4.46<y_cms<-2.96) centre-of-mass rapidity. The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over pT.

Differential cross sections d^2sigma^cent_JPsi/dydpt as function of pt for six centrality classes at forward (2.03<y_cms<3.53) centre-of-mass rapidity. The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over pT.

Differential cross sections dsigma^cent_JPsi/dy for four centrality classes at mid-rapidity (-1.37<y_cms<0.43). The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over centrality.

More…