Evidence for a nuclear phase transition in target nuclei after relativistic nuclear interactions

The KLM collaboration Dabrowska, A. ; Holynski, R. ; Olszewski, A. ; et al.
Z.Phys.C 59 (1993) 399-404, 1993.
Inspire Record 355033 DOI 10.17182/hepdata.40646

The degree of excitation of the emulsion target nuclei due to nuclear interactions of oxygen and sulfur projectiles at 200 GeV/nucleon incident energy has been investigated. Using the plausible assumption that the numberNb of slow particles emitted from the struck target nucleus can be interpreted as a measure of the temperatureT of the residual nucleus, we have found that there exists a critical temperatureTc of the excited target nucleus. For Ag and Br target nuclei this temperature corresponds to <Nb>≌12 and it is attained when the impact parameters are less than about 4 fm.

2 data tables

No description provided.

No description provided.


Multiplicity characteristics of particles produced in C-12 emulsion collisions at 4.5-A/GeV/c

Ahmad, M.S. ; Khan, M.Q.R. ; Siddique, K.A. ; et al.
Int.J.Mod.Phys.A 10 (1995) 845-857, 1995.
Inspire Record 401127 DOI 10.17182/hepdata.40450

Experimental data on multiplicities and correlations of charged particles of different types produced in collisions of 4.5 A GeV/c carbon-12 with emulsion are reported and discussed. The data are compared with the results of other experiments on nucleus–nucleus and hadron–nucleus collisions. It is found that the particle production mechanism in nucleus–nucleus collisions is almost the same as in hadron–nucleus collisions. It is also observed that the shower particles' multiplicity distributions obey a KNO type scaling law, which supports the aforementioned result.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of 525-GeV pion interactions in emulsion

Cherry, M.L. ; Jones, W.V. ; Sengupta, K. ; et al.
Phys.Rev.D 50 (1994) 4272-4282, 1994.
Inspire Record 384760 DOI 10.17182/hepdata.22368

Measurements have been made of inclusive 525 GeV π− interactions in emulsion. The results are compared to proton-emulsion and lower energy pion-emulsion data. Average multiplicities of relativistic shower particles increase with increasing energy, although with a somewhat steeper slope above 60 GeV than at lower energies. The ratio 〈ns〉p/〈ns〉π∼1.1 over the energy range 60–525 GeV. The ratio of the dispersion in the multiplicity distribution to the average multiplicity is the same for proton and pion collisions in emulsion, and is independent of projectile energy. The shape of the shower particle multiplicity distribution does not vary significantly with energy, and KNO scaling appears to hold over the energy range 60–525 GeV. The shower particle pseudorapidity distributions are independent of the beam energy in the target and projectile fragmentation regions, and both the pseudorapidity and multiplicity distributions agree reasonably well with the fritiof model predictions for 525 GeV pions. The dependence of the shower particle multiplicity 〈ns〉 on the number of heavy tracks Nh appraoches saturation as the total shower particle energy becomes a significant fraction of √s , and the pseudorapidity distributions shift toward smaller 〈η〉 with increasing numbers of grey and black tracks at 525 GeV. Neither the average number 〈Nh〉 nor the multiplicity distributions of the heavily ionizing tracks vary significantly with energy, and the normalized angular distributions of grey and black tracks are independent of the type of projectile or projectile energy.

15 data tables

NUCLEUS means average nuclei of BR-2 emulsion.

NUCLEUS means average nuclei of BR-2 emulsion.

NUCLEUS means average nuclei of BR-2 emulsion.

More…

Inelastic interactions of Li-6 nuclei in emulsion at 4.5-A/GeV/c as a probe for Li-6 internal structure

El-Sharkawy, S. ;
Phys.Scripta 50 (1994) 97-101, 1994.
Inspire Record 383434 DOI 10.17182/hepdata.19309

The mean free path for inelastic interactions of 6Li in emulsion is measured and found not to be in systematic agreement with the different known theoretical parameterizations. This may be attributed to the loosely bound structure of 6Li nuclei. Possible internal structures of 6Li nuclei are investigated via the analysis of the shower particles multiplicity distributions for inclusive and central 6Li-Em interactions. In this analysis the experimental P-Em, d-Em and α-Em data are used as inputs for folding the corresponding distributions for 6Li-Em interactions. The results from central collisions favour the (α + d) cluster structure for the incident 6Li nuclei.

3 data tables

INTERACTION WITH EMULSION NUCLEUS WAS MEASURED.

INTERACTION WITH average AgBr NUCLEUS WAS MEASURED.

INTERACTION WITH average AgBr NUCLEUS WAS MEASURED.


Sigma- nucleus interactions in emulsion at 350-GeV

Szarska, M. ; Wilczynski, H. ; Wolter, W. ; et al.
Phys.Rev.D 47 (1993) 784-790, 1993.
Inspire Record 33307 DOI 10.17182/hepdata.22740

Experimental data on multiplicities and angular distributions of heavy ionizing and shower particles in inelastic interactions of 350 GeV Σ− hyperons in nuclear emulsion are presented. The data are compared with the results of other experiments on proton and pion interactions in emulsion at energies of 60-800 GeV. We observe no significant differences in the global characteristics of strange hyperon interactions relative to nonstrange baryon interactions at equivalent energies, other than those attributable to the differing cross sections.

3 data tables

No description provided.

No description provided.

No description provided.


Inclusive Characteristics of $\pi^-$ Mesons Produced in $p$ C and $p$ Ta Interactions at 10-{GeV}/$c$ Proton Momentum

Armutliisky, D.D. ; Akhababian, N.O. ; Grishin, V.G. ; et al.
Sov.J.Nucl.Phys. 48 (1988) 101-107, 1988.
Inspire Record 251090 DOI 10.17182/hepdata.9502

None

8 data tables

No description provided.

No description provided.

MOMENTUM SPECTRA IN THE WINDOW P=0.1-6.0 HAVE BEEN FITTED BY THE FORMULA: (1/N)*D(N)/D(P)=CONST(Q=1)*EXP(-SLOPE(Q=1)*P)+CONST(Q=2)*EXP (-SLOPE(Q=2)*P).

More…

Cumulative production of pi- mesons in pi C interactions at 40-GeV/c

Baatar, Ts. ; Batsaikhan, Ts. ; Ivanovskaya, I.A. ; et al.
Sov.J.Nucl.Phys. 52 (1990) 504-508, 1990.
Inspire Record 299082 DOI 10.17182/hepdata.38727

None

7 data tables

HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON). THE DISTRIBUTION (1/N)*D(N)/D(XL) WAS FITTED BY THE SUM: CONST(1)* EXP(-SLOPE(1)*XL)+CONST(2)*EXP(-SLOPE(2)*XL).

HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON). THE DISTRIBUTION (XL/N)*D(N)/D(XL) WAS FITTED BY THE SUM: CONST(1)* EXP(-SLOPE(1)*XL)+CONST(2)*EXP(-SLOPE(2)*XL).

HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON).

More…

Characteristics of neutral pion production process in pi- Xe nuclear collisions at 3.5-GeV/c momentum

Strugalski, Z. ; Sredniawa, B. ; El-Sharkawy, S. ; et al.
JINR-E1-90-459, 1990.
Inspire Record 303170 DOI 10.17182/hepdata.39384

None

5 data tables

No description provided.

No description provided.

No description provided.

More…

Characteristics of the pion production and proton emission processes in proton - carbon nuclear collisions at 4.2-GeV/c momentum

Strugalski, Z. ; Sultanov, M. ;
JINR-E1-92-68, 1992.
Inspire Record 336351 DOI 10.17182/hepdata.39402

None

12 data tables

No description provided.

No description provided.

No description provided.

More…

EXCLUSIVE MEASUREMENTS OF LIGHT FRAGMENT PRODUCTION AT FORWARD ANGLES IN Ne - Pb AND Ne - NaF COLLISIONS AT E/A = 400-MeV AND 800-MeV

Bastid, N. ; Alard, J.P. ; Arnold, J. ; et al.
Nucl.Phys.A 506 (1990) 637-654, 1990.
Inspire Record 25478 DOI 10.17182/hepdata.36887

Emission of light fragments at small angles is studied in relativistic heavy ion collisions using the Diogene plastic wall for both symmetrical and non-symmetrical target-projectile systems with 400 MeV per nucleon and 800 MeV per nucleon incident neon nuclei. Efficiency of multiplicity measurements in the small angle range for the selection of central or peripheral collisions is confirmed for asymmetric systems. Differential production cross sections of Z = 1 fragments show evidence for the existence of two emitting sources. The apparent temperature of each source is obtained from comparison with a thermodynamical model.

2 data tables

THE NUCLEUS IS NAF. CHARGED PARTICLES IN THE CENTRAL DRIFT CHAMBER OF THE DIOGENE DETECTOR.

THE NUCLEUS IS NAF. CHARGED PARTICLES IN THE CENTRAL DRIFT CHAMBER OF THE DIOGENE DETECTOR. THE EVENT SELECTION:A HEAVY FRAGMENT(Z>=6) IS REGISTRED IN THE PLASTIC WALL OF THE DIOGENE.