A Study of the Inclusive $K_s^0$, $\Lambda$, $\bar{\Lambda}$ Production in Diffractive $\gamma$P Interactions

Bhadra, S. ; Appel, J.A. ; Bartlett, D.F. ; et al.
Phys.Rev.Lett. 55 (1985) 2749, 1985.
Inspire Record 217669 DOI 10.17182/hepdata.20275

We have studied inclusive KS, Λ, and Λ¯ photoproduction over the ranges 40<Eγ<170 GeV and forward produced mass 2<MF<10 GeV. We observe equal Λ and Λ¯ production rates and spectra as expected in a diffractive process where the target proton remains unaltered. We show that the fraction of hadronic events with a strange particle produced in events with forward mass MF agrees well with the same measurement in e+e− annihilation at a center-of-mass energy Ec.m.=MF. The x=2PMF distributions of these three particles in the forward-mass rest frame are compared with theoretical predictions.

1 data table

No description provided.


Measurements of the Photon Total Cross-Section on Protons from 18-GeV to 185-GeV

Caldwell, David O. ; Cumalat, John P. ; Eisner, A.M. ; et al.
Phys.Rev.Lett. 40 (1978) 1222, 1978.
Inspire Record 129172 DOI 10.17182/hepdata.3355

The photon total cross section on protons has been measured with high precision in the Fermilab tagged-photon beam for photon energies from 18 to 185 GeV. The cross section decreases to a broad minimum near 40 GeV, and then rises by about 4 μb over the remainder of the range. A ρ+ω+ϕ vector-dominance model (normalized to low-energy data) falls below the high-energy results by 2 to 6 μb, suggesting a contribution from charm-anticharm states.

2 data tables

No description provided.

No description provided.


A Study of D* Production in High-Energy $\gamma$ p Interactions

Sliwa, K. ; Appel, J.A. ; Biel, J. ; et al.
Phys.Rev.D 32 (1985) 1053-1060, 1985.
Inspire Record 194636 DOI 10.17182/hepdata.23561

We have studied D* production mechanisms using data from a photoproduction experiment at the Fermilab Tagged Photon Spectrometer. A large sample of charged D*’s was selected via the clean signature of the cascade decay D*→D0π+ and subsequently D0→K−π+ or D0→K−π+π0. The cross section for the process γp→(D*++anything)p at an average energy of 105 GeV was measured to be 88±32 nb. Only (11±7)% of D*’s were found to be consistent with being accompanied solely by a D¯* or a D¯; the remaining events contain additional particles. The distribution of the production angle of the D* in the photon-fragmentation-system center of mass is strongly anisotropic and consistent with the form f(θ*)=cos4θ*. We set a limit on the associated-production-process cross section σ(γp→(D¯*−+anything)Λc) x)<60 nb (90% C.L.).

2 data tables

No description provided.

No description provided.


An Experimental Study of the a-Dependence of $J/\psi$ Photoproduction

The Fermilab Tagged Photon Spectrometer collaboration Sokoloff, M.D. ; dos Anjos, J.C.C. ; Appel, J.A. ; et al.
Phys.Rev.Lett. 57 (1986) 3003, 1986.
Inspire Record 235061 DOI 10.17182/hepdata.20205

We have studied the photoproduction of Jψ mesons on H, Be, Fe, and Pb targets using real photons at a mean energy of 120 GeV. The pT2 spectra were used to separate the coherent diffractive signals from the incoherent signals. Parametrizing the per-nucleus cross sections in terms of power-law dependences, Aα, we find that αcoh=1.40±0.06±0.04 for the coherent diffractive signals and αincoh=0.94±0.02±0.03 for the incoherent signals.

1 data table

CROSS-SECTIONS ARE RELATIVE TO THAT FOR INCOHERENT J/PSI PRODUCTION OFF BERYLLIUM.


Inelastic and Elastic Photoproduction of J/$\psi$ (3097)

Denby, Bruce H. ; Bharadwaj, V.K. ; Summers, D.J. ; et al.
Phys.Rev.Lett. 52 (1984) 795-798, 1984.
Inspire Record 195929 DOI 10.17182/hepdata.20438

Inelastic and elastic $J/\psi$ photoproduction on hydrogen are investigated at a mean energy of 105 GeV. The inelastic cross section with $E_{\psi} / E_{\gamma}$ < 0.9 is significantly lower than the corresponding result for muoproduction on iron targets, but is consistent with a second-order perturbative QCD calculation.

1 data table

No description provided.


Measurement of $\omega$ Meson Photoproduction on Protons From 46 GeV to 180 GeV

Egloff, R.M. ; Davis, P.J. ; Luste, G.J. ; et al.
Phys.Rev.Lett. 43 (1979) 1545, 1979.
Inspire Record 142364 DOI 10.17182/hepdata.3122

Elastic ω-meson photoproduction on protons has been measured from 46 to 180 GeV. The cross section is approximately constant with photon energy and averages 1.10 ± 0.08 μb. The t dependence of the differential cross section is consistent with A exp(bt), where b=8.4±0.7 GeV−2. The photon-omega coupling constant, obtained from a normalization of hadron elastic-scattering cross sections to the photoproduction data of this experiment (with use of vector-meson dominance and an additive quark model), is γω24π=5.4±0.4.

4 data tables

THE QUOTED STATISTICAL ERRORS INCLUDE THE UNCERTAINTY IN THE CORRECTION FOR INELASTIC EVENTS. AVERAGE CROSS SECTION IS 1.10 +- 0.08 MUB.

EXPONENTIAL FIT TO DIFFERENTIAL CROSS SECTION.

No description provided.

More…

Measurements of Elastic Rho and Phi Meson Photoproduction Cross-Sections on Protons from 30 GeV to 180 GeV

Egloff, R.M. ; Davis, P.J. ; Luste, G. ; et al.
Phys.Rev.Lett. 43 (1979) 657, 1979.
Inspire Record 141059 DOI 10.17182/hepdata.20740

The elastic photoproduction cross sections for ρ and ϕ mesons from protons have been measured from 30 to 180 GeV. The energy dependences agree well with predictions made by using vector-meson dominance and an additive quark model. The ρ cross section is approximately constant with energy while the ϕ cross section rises from 0.5 to 0.7 μb with increasing energy.

1 data table

No description provided.


Measurement of J/$\psi$ (3100) Photoproduction in Deuterium at 55-GeV

Nash, T. ; Belousov, A. ; Govorkov, B. ; et al.
Phys.Rev.Lett. 36 (1976) 1233, 1976.
Inspire Record 108460 DOI 10.17182/hepdata.12555

We report the result of a brief experiment to measure the cross section for photoproduction of Jψ(3100). At a mean energy of 55 GeV we find this cross section per nucleon to be 37.5 ± 8.2 (statistical) ± 4 (systematic) nb. The result establishes the previously indicated rise in Jψ photoproduction on protons above 20 GeV and suggests that the rise has occurred by 55 GeV.

1 data table

CROSS SECTION PER NUCLEON DERIVED FROM DEUTERIUM DATA ASSUMING INCOHERENT PART OF T DISTRIBUTION HAS EXPERIMENTAL SLOPE OF 1.8 +- 0.4 GEV**-2, 6 PCT COHERENT PART CALCULATED WITH KNOWN DEUTERIUM WAVE FUNCTION AND NEGLECTING SHADOWING. The mean P quoted in the table assumes the J/PSI energy equals the photon energy.


Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Determination of alpha(s) from hadronic event shapes in e+ e- annihilation at 192-GeV <= s**(1/2) <= 208-GeV

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 217-228, 2002.
Inspire Record 586115 DOI 10.17182/hepdata.49741

Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.

9 data tables

The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.

Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.

Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.

More…