Search for a third-generation leptoquark coupled to a $\tau$ lepton and a b quark through single, pair, and nonresonant production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-19-016, 2023.
Inspire Record 2688366 DOI 10.17182/hepdata.141707

A search is presented for a third-generation leptoquark (LQ) coupled exclusively to a $\tau$ lepton and a b quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with $\tau$ leptons and a varying number of jets originating from b quarks are considered, targeting the single and pair production of LQs, as well as nonresonant $t$-channel LQ exchange. An excess is observed in the data with respect to the background expectation in the combined analysis of all search regions. For a benchmark LQ mass of 2 TeV and an LQ-b-$\tau$ coupling strength of 2.5, the excess reaches a local significance of up to 2.8 standard deviations. Upper limits at the 95% confidence level are placed on the LQ production cross section in the LQ mass range 0.5-2.3 TeV, and up to 3 TeV for $t$-channel LQ exchange. Leptoquarks are excluded below masses of 1.22-1.88 TeV for different LQ models and varying coupling strengths up to 2.5. The study of nonresonant $\tau\tau$ production through $t$-channel LQ exchange allows lower limits on the LQ mass of up to 2.3 TeV to be obtained.

20 data tables

Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $S_\mathrm{T}^\mathrm{MET} > 800\,\mathrm{GeV}$ and are computed with respect to all possible decay modes of two $\tau$ leptons.

Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $\chi < 4$ and are computed with respect to all possible decay modes of two $\tau$ leptons.

Postfit distributions of $S_\mathrm{T}^\mathrm{MET}$ in the $\mathrm{e}\mu$ channel of the 0b category for the combined 2016-2018 data set after a simultaneous fit of the background and vector LQ signal to the data. The number of events in each bin are divided by the respective bin width. The last bin includes the overflow.

More…

Measurement of the $\Lambda$ hyperon lifetime

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 108 (2023) 032009, 2023.
Inspire Record 2637684 DOI 10.17182/hepdata.141278

A new, more precise measurement of the $\Lambda$ hyperon lifetime is performed using a large data sample of Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with ALICE. The $\Lambda$ and $\overline{\Lambda}$ hyperons are reconstructed at midrapidity using their two-body weak decay channel $\Lambda \rightarrow \mathrm{p} + \pi^{-}$ and $\overline{\Lambda} \rightarrow \overline{\mathrm{p}} + \pi^{+}$. The measured value of the $\Lambda$ lifetime is $\tau_{\Lambda} = [261.07 \pm 0.37 \ ( \rm stat.) \pm 0.72 \ (\rm syst.) ]\ \rm ps$. The relative difference between the lifetime of $\Lambda$ and $\overline{\Lambda}$, which represents an important test of CPT invariance in the strangeness sector, is also measured. The obtained value $(\tau_{\Lambda}-\tau_{\overline{\Lambda}})/\tau_{\Lambda} = 0.0013 \pm 0.0028 \ (\mathrm{stat.}) \pm 0.0021 \ (\mathrm{syst.})$ is consistent with zero within the uncertainties. Both measurements of the $\Lambda$ hyperon lifetime and of the relative difference between $\tau_{\Lambda}$ and $\tau_{\overline{\Lambda}}$ are in agreement with the corresponding world averages of the Particle Data Group and about a factor of three more precise.

4 data tables

Lproper spectrum of Lambda and exponential fit for the lifetime extraction. Only statistical uncertainties are shown for each data point and for the mean lifetime extracted from the exponential fit.

Lproper spectrum of Antilambda and exponential fit for the lifetime extraction. Only statistical uncertainties are shown for each data point and for the mean lifetime extracted from the exponential fit.

Lproper spectrum of Lambda and Antilambda and exponential fit for the lifetime extraction. Only statistical uncertainties are shown for each data point and for the mean lifetime extracted from the exponential fit.

More…

Measurement of the $CP$ properties of Higgs boson interactions with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 563, 2023.
Inspire Record 2613280 DOI 10.17182/hepdata.131601

A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.

5 data tables

Observed 1-D likelihood scan of the $CP$-mixing angle $\phi_{\tau}$.

Expected 1-D likelihood scan of the $CP$-mixing angle $\phi_{\tau}$.

Observed 2-D likelihood scan of the signal strength $\mu_{\tau\tau}$ versus the $CP$-mixing angle $\phi_{\tau}$.

More…

Searches for additional Higgs bosons and for vector leptoquarks in $\tau\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 073, 2023.
Inspire Record 2132368 DOI 10.17182/hepdata.128147

Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.

313 data tables

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled. The peak in the expected $gg\phi$ limit is tribute to a loss of sensitivity around $90\text{ GeV}$ due to the background from $Z/\gamma^\ast\rightarrow\tau\tau$ events. Numerical values provided in this table correspond to Figure 10a of the publication.

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 10b of the publication.

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 37 of the auxilliary material of the publication.

More…

Search for heavy resonances and quantum black holes in e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 227, 2023.
Inspire Record 2081834 DOI 10.17182/hepdata.127302

A search is reported for heavy resonances and quantum black holes decaying into e$\mu$, e$\tau$, and $\mu\tau$ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The e$\mu$, e$\tau$, and $\mu\tau$ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant $\tau$ sneutrino production in $R$ parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant $\tau$ sneutrinos are excluded for masses up to 4.2 TeV in the e$\mu$ channel, 3.7 TeV in the e$\tau$ channel, and 3.6 TeV in the $\mu\tau$ channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the e$\mu$ channel, up to 4.3 TeV in the e$\tau$ channel, and up to 4.1 TeV in the $\mu\tau$ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the e$\mu$ channel, 5.2 TeV in the e$\tau$ channel, and 5.0 TeV in the $\mu\tau$ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.

25 data tables

Mass distributions for the e$\mu$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

Mass distributions for the e$\tau$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

Mass distributions for the $\mu\tau$ channel. In addition to the observed data (black points) and SM prediction (filled histograms), expected signal distributions for three models are shown: the RPV SUSY model with $\lambda = \lambda' = 0.01$ and $\tau$ sneutrino mass of 1.6 TeV, a Z′ boson ($\mathcal{B}=0.1$) with a mass of 1.6 TeV , and the QBH signal expectation for $n=4$ and a threshold mass of 1.6 TeV. The bin width gradually increases with mass.

More…

Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the $ \tau\tau$ final state

The CMS collaboration Collaboration, The Cms ;
CMS-HIG-20-007, 2022.
Inspire Record 2079998 DOI 10.17182/hepdata.129530

A study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of $\tau$ leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure $CP$-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions.

40 data tables

Observed likelihood scan of $f_{a3}^{\mathrm{ggH}}$ (MELA method).

Expected likelihood scan of $f_{a3}^{\mathrm{ggH}}$ (MELA method).

Observed likelihood scan of $f_{a3}^{\mathrm{ggH}}$ ($\Delta\phi_{\mathrm{jj}}$ method).

More…

Analysis of the CP structure of the Yukawa coupling between the Higgs boson and $\tau$ leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2022) 012, 2022.
Inspire Record 1940967 DOI 10.17182/hepdata.104978

The first measurement of the CP structure of the Yukawa coupling between the Higgs boson and $\tau$ leptons is presented. The measurement is based on data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The analysis uses the angular correlation between the decay planes of $\tau$ leptons produced in Higgs boson decays. The effective mixing angle between CP-even and CP-odd $\tau$ Yukawa couplings is found to be $-$1 $\pm$ 19$^\circ$, compared to an expected value of 0 $\pm$ 21$^\circ$ at the 68.3% confidence level. The data disfavour the pure CP-odd scenario at 3.0 standard deviations. The results are compatible with predictions for the standard model Higgs boson.

7 data tables

Observed likelihood scan of $\alpha^{\mathrm{H}\tau\tau}$.

Expected likelihood scan of $\alpha^{\mathrm{H}\tau\tau}$.

Observed likelihood scan in the ($\alpha^{\mathrm{H}\tau\tau}$, $\mu$) plane.

More…

Searches for lepton-flavour-violating decays of the Higgs boson in $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 800 (2020) 135069, 2020.
Inspire Record 1743838 DOI 10.17182/hepdata.96299

This Letter presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of $36.1\,\mathrm{fb}^{-1}$. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95 % confidence-level upper limits on the lepton-flavour-violating branching ratios are $0.47\%$ ($0.34^{+0.13}_{-0.10}\,\%$) and $0.28\%$ ($0.37^{+0.14}_{-0.10}\,\%$) for $H\to e\tau$ and $H\to\mu\tau$, respectively.

2 data tables

95% CL upper limits on the branching ratio H --> e tau.

95% CL upper limits on the branching ratio H --> mu tau.


Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 800 (2020) 135087, 2020.
Inspire Record 1744267 DOI 10.17182/hepdata.90694

A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb${-1}$. The 2$\mu$2$\tau$ and 4$\tau$ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4$\tau$ final state, $\sigma\mathcal{B}$, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on $\sigma\mathcal{B}$, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.

1 data table

Expected and observed 95% CL upper limits on (sigma(pp->h)/sigma(pp->hSM)) * B(h -> aa -> tautautautau) as a function of m(a) obtained from the 13 TeV data, where h(SM) is the Higgs boson of the standard model, h is the observed particle with mass of 125 GeV, and (a) denotes a light Higgs-like state.


Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $\tau$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 785 (2018) 462, 2018.
Inspire Record 1674926 DOI 10.17182/hepdata.86228

A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the first time in the final state with two b quarks and two $\tau$ leptons. The search is motivated in the context of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with a complex scalar singlet (2HDM+S), which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and no excess of events above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction $\mathcal{B}$(h $\to$ aa $\to$ 2$\tau$2b) assuming the SM production of the Higgs boson. Upper limits are also set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM+S scenarios. Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM.

1 data table

Expected and observed 95% CL upper limits on (sigma(pp->h)/sigma(pp->hSM)) * B(h -> aa -> bbtautau) as a function of m(a), where h(SM) is the Higgs boson of the standard model, h is the observed particle with mass of 125 GeV, and a denotes a light Higgs-like state, as obtained from the 13 TeV data.