Charge changing fragmentation of 10.6-GeV/nucleon Au-197 nuclei

The UHIC collaboration Geer, L.Y. ; Klarmann, J. ; Nilsen, B.S. ; et al.
Phys.Rev.C 52 (1995) 334-345, 1995.
Inspire Record 406577 DOI 10.17182/hepdata.25870

We have measured the charge-changing cross sections of 10.6 GeV/nucleon Au197 nuclei interacting in targets of CH2 (polyethylene), C, Al, Cu, Sn, and Pb. Cross sections for H are calculated from those measured in C and CH2. The total charge-changing cross sections are higher than those measured at energies of ≤1 GeV/nucleon. The measured cross sections for the heavier targets are somewhat larger than those predicted by a model based on data taken at lower energies with lighter targets. Partial charge-changing cross sections for the production of fragments from the incident Au projectiles were measured for charge changes (ΔZ) from ΔZ=+1,80Hg, down to approximately ΔZ=-29,50Sn. In comparison to lower energy measurements, these partial cross sections are found to be smaller for small ΔZ and larger or the same for large ΔZ. The H partial cross sections are found to follow a power law in ΔZ similar to that for heavier targets, instead of the exponential form observed at lower energies. Factorization is found to hold for all partial cross sections with ΔZ greater than two. In the heavier targets, the cross sections for one and two proton removal have significant contributions from electromagnetic dissociation. The electromagnetic dissociation contribution to the total cross section is derived and found to be relatively small, but with a strong dependence on the charge of the target nuclei of the form ZT1.75±0.01.

2 data tables

TARGET NUCLEUS=CH2(POLYETHYLENE).

TARGET NUCLEUS=CH2(POLYETHYLENE).


Nuclear and electromagnetic fragmentation of 2.25-TeV Au-197 nuclei

He, Y.D. ; Price, P.B. ;
Z.Phys.A 348 (1994) 105-109, 1994.
Inspire Record 380468 DOI 10.17182/hepdata.16562

We report the first measurement of the total charge-loss cross section σtot=σem+σnuc and partial cross sections (for ΔZ=1, 2, ..., 9) of 11.4 A GeV197Au nuclei in various targets. The large Coulomb barrier for Au reduces the electromagnetic contribution σem in a Pb target to only 18% of σnuc, compared with ∼ 70% for 14.5 A GeV28Si and 120% for 200 A GeV32S. With σem taken to be ∝ZT1.8, σnuc can be fitted with σnuc=α(AP1/3 +AT1/3−b)2, with b=0.83 and α=59 mb, essentially the same as found at energies of 1 to 2 A GeV. Electromagnetic partial cross sections for ΔZ=1 exceed ∼ 40 mb in the Pb, Sn, Cu, and Fe targets and are substantial for larger values ofΔZ in the heavier targets.

2 data tables

TOTAL CHARGE-LOSS CROSS SECTION.

PARTIAL CHARGE-CHANGING CROSS SECTION.