Continuum charged D* spin alignment at s**(1/2) = 10.5-GeV.

The CLEO collaboration Brandenburg, G. ; Briere, Roy A. ; Ershov, A. ; et al.
Phys.Rev.D 58 (1998) 052003, 1998.
Inspire Record 467595 DOI 10.17182/hepdata.47207

A measurement of the spin alignment of charged D^* mesons produced in continuum e^+ e^- \to c \bar{c} events at \sqrt{s}=10.5 GeV is presented. This study using 4.72 fb^{-1} of CLEO II data shows that there is little evidence of any D^* spin alignment.

4 data tables

Systematic errors are not given.

Systematic errors are not given.

Two decay modes of D0 --> K- PI+ and D0 --> K- PI+ PI0 are combined.

More…

Study of Phi(1020), D*+- and B* spin alignment in hadronic Z0 decays.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 437-449, 1997.
Inspire Record 440103 DOI 10.17182/hepdata.47515

Measurements of helicity density matrix elements have been made for the φ(1020), D*± and B* vector mesons in multihadronic Z0 decays in the OPAL experiment at LEP. Results for inclusive φ produced with high energy show evidence for production preferentially in the helicity zero state, with ρ00 = 0.54 ± 0.08, compared to the value of 1/3 expected for no spin alignment. The corresponding element for the D*± has a value of 0.40 ± 0.02, also suggesting a deviation from 1/3. The B* result, with ρ00 = 0.36 ± 0.09, is consistent with no spin alignment. Off-diagonal elements have been measured for the f and D* mesons; for the D* the element Re ρ1−1 is non-zero, indicating non-independent fragmentation of the primary quarks.

4 data tables

Helicity density matrices elements. Helicity beam frame is used.

Charge conjugated states are understood.

Helicity density matrices elements. Charge conjugated states are understood.

More…

Test of spin dependence in charm-quark fragmentation to D*.

The TPC/Two-Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 43 (1991) 29-33, 1991.
Inspire Record 316132 DOI 10.17182/hepdata.22830

We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.

2 data tables

Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).

Spin density matrices for D* --> D0 pi+.


Measurement of the Spin Density Matrix of $D^*$ Mesons Produced in $e^+ e^-$ Annihilations

The HRS collaboration Abachi, S. ; Akerlof, C. ; Baringer, P. ; et al.
Phys.Lett.B 199 (1987) 585-590, 1987.
Inspire Record 250823 DOI 10.17182/hepdata.30012

Vector mesons produced in the reaction e + e − →V+X at √ s =29 GeV were isolated by observing D ∗ mesons through the D ∗+ → D 0 π + decay. The D 0 decay modes used are D 0 →K3 π , K π , K π , and K π ( π 0 ). The data, which correspond to an integrated luminosity of 300 pb −1 , were collected by the High Resolution Spectrometer at PEP. Spin density matrix elements for the D ∗ meson are measured as a function of the energy sharing variable Z D ∗ . There is no evidence for alignment of D ∗ mesons produced in e + e − annihilation at our energy.

6 data tables

Spin density matrix for D0 --> K PI decay mode.

Spin density matrix for D0 --> K 3PI decay mode.

Spin density matrix for D0 --> K PI (PI0) decay mode.

More…