Inclusive Production of Charged Pions, Charged and Neutral Kaons and Anti-protons in $e^+ e^-$ Annihilation at 10-{GeV} and in Direct $\Upsilon$ Decays

The ARGUS collaboration Albrecht, H. ; Bockmann, P. ; Glaser, R. ; et al.
Z.Phys.C 44 (1989) 547, 1989.
Inspire Record 276860 DOI 10.17182/hepdata.15362

Using the ARGUS detector at thee+e− storage ring DORIS II, we have investigated inclusive production of π±,K±,Ks0 and\(\bar p\) in multihadron events at 9.98 GeV and in direct decays of the ϒ(1S) meson, i.e. from quark and gluon fragmentation. The most pronounced difference is the rate of baryon production. The Lund Monte Carlo program gives a reasonable qualitative description, although it cannot reproduce our data in detail.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive Hadron Production in Upsilon Decays and in Nonresonant electron-Positron Annihilation at 10.49-GeV

The CLEO collaboration Behrends, S. ; Chadwick, K. ; Gentile, T. ; et al.
Phys.Rev.D 31 (1985) 2161, 1985.
Inspire Record 205668 DOI 10.17182/hepdata.23589

We report measurements of single-particle inclusive spectra and two-particle correlations in decays of the Υ(1S) resonance and in nonresonant annihilations of electrons and positrons at center-of-mass energy 10.49 GeV, just below BB¯ threshold. These data were obtained using the CLEO detector at the Cornell Electron Storage Ring (CESR) and provide information on the production of π, K, ρ, K*, φ, p, Λ, and Ξ in quark and gluon jets. The average multiplicity of hadrons per event for upsilon decays (compared with continuum annihilations) is 11.4 (10.5) pions, 2.4 (2.2) kaons, 0.6 (0.5) ρ0, 1.2 (0.8) K*, 0.6 (0.4) protons and antiprotons, 0.15 (0.08) φ, 0.19 (0.07) Λ and Λ¯, and 0.016 (0.005) Ξ− and Ξ¯ +. We have also seen evidence for η and f0 production. The most significant differences between upsilon and continuum final states are (1) the inclusive energy spectra fall off more rapidly with increasing particle energy in upsilon decays, (2) the production of heavier particles, especially baryons, is not as strongly suppressed in upsilon decays, and (3) baryon and antibaryon are more likely to be correlated at long range in upsilon decay than in continuum events.

36 data tables

No description provided.

No description provided.

VALUES AT X = 0.10 ARE ACTUALLY AP RATES DOUBLED.

More…