Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

The CLEO collaboration Pedlar, T.K. ; Cronin-Hennessy, D. ; Gao, K.Y. ; et al.
Phys.Rev.Lett. 95 (2005) 261803, 2005.
Inspire Record 693873 DOI 10.17182/hepdata.130708

Using 20.7 pb^-1 of e+e- annihilation data taken at sqrt{s} = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q^2| = 13.48 GeV^2 by the reaction e+e- to h+h-. The measurements are the first ever with identified pions and kaons of |Q^2| > 4 GeV^2, with the results F_pi(13.48 GeV^2) = 0.075+-0.008(stat)+-0.005(syst) and F_K(13.48 GeV^2) = 0.063+-0.004(stat)+-0.001(syst). The result for the proton, assuming G^p_E = G^p_M, is G^p_M(13.48 GeV^2) = 0.014+-0.002(stat)+-0.001(syst), which is in agreement with earlier results.

2 data tables

Born cross section of $e^+e^-\rightarrow h^+h^-$

Timelike form factor


Version 4
Measurement of the $\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^-$ Cross Section between 600 and 900 MeV Using Initial State Radiation

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Lett.B 753 (2016) 629-638, 2016.
Inspire Record 1385603 DOI 10.17182/hepdata.73898

In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.

10 data tables

Results of the BESIII measurement of the cross section $\sigma^{\rm bare}_{\pi^+\pi^-(\gamma_{\rm FSR})} \equiv \sigma^{\rm bare}(e^+e^-\rightarrow\pi^+\pi^-(\gamma_{\rm FSR}))$ and the squared pion form factor $|F_\pi|^2$. The errors are statistical only. The value of $\sqrt{s'}$ represents the bin center. The 0.9$\%$ systematic uncertainty is fully correlated between any two bins.

Results for the bare cross section $\sigma^\text{bare}_{\pi^+\pi^-}$ and the pion form factor together with their statistical uncertainties. The systematical uncertainties are given by 0.9% (see <a href="https://inspirehep.net/literature/1385603">arXiv:1507.08188</a>).

Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.

More…

Measurement of $\sigma(e^+e^-\to\pi^+\pi^-\gamma(\gamma))$ and the dipion contribution to the muon anomaly with the KLOE detector

The KLOE collaboration Ambrosino, F. ; Antonelli, A. ; Antonelli, M. ; et al.
Phys.Lett.B 670 (2009) 285-291, 2009.
Inspire Record 797438 DOI 10.17182/hepdata.57088

We have measured the cross section $\sigma(e^+e^-\to\pi^+\pi^-\gamma(\gamma))$ at DA$\Phi$NE, the Frascati \phi-factory, using events with initial state radiation photons emitted at small angle and inclusive of final state radiation. We present the analysis of a new data set corresponding to an integrated luminosity of 240 pb$^{-1}$. We have achieved a reduced systematic uncertainty with respect to previously published KLOE results. From the cross section we obtain the pion form factor and the contribution to the muon magnetic anomaly from two pion states in the mass range $0.592 &lt; M_{\pi\pi} &lt; 0.975$ GeV. For the latter we find $\Delta a^{\pi\pi}_\mu = (387.2\pm0.5_{\rm stat}\pm2.4_{\rm exp}\pm2.3_{\rm th})\times 10^{-10}$

3 data tables

Differential cross section for E+ E- --> PI+ PI- GAMMA (GAMMA).

Total cross section for E+ E- --> PI+ PI-.

Pion form factor.


The Pion Electromagnetic Form-factor in the Timelike Energy Range 1.35-{GeV} $\le \sqrt{s} \le$ 2.4-{GeV}

The DM2 collaboration Bisello, D. ; Busetto, G. ; Castro, A. ; et al.
Phys.Lett.B 220 (1989) 321-327, 1989.
Inspire Record 267118 DOI 10.17182/hepdata.29829

The e + e − → π + π − cross section has been measured from about 280 events (an order of magnitude more than the previous world statistics) in the energy interval 1.35 ⩽ s ⩽ 2.4 GeV with the DM2 detector at DCI. The pion squared form factor | F π | 2 shows a deep minimum around 1.6 GeV/ c 2 and is better fit under the hypothesis of two ϱ-like resonance ⋍0.25 GeV/ c 2 wide with 1.42 and 1.77 GeV/ c 2 masses.

1 data table

Statistical errors only.


Measurement of the Pion Form-factor in the Timelike Region for $q^2$ Values Between .1-{GeV}/$c^2$ and .18-{GeV}/$c^2$

Amendolia, S.R. ; Badelek, B. ; Batignani, G. ; et al.
Phys.Lett.B 138 (1984) 454-458, 1984.
Inspire Record 195944 DOI 10.17182/hepdata.30572

The EM form factor of the pion has been studied in the time-like region by measuring σ (e + e − → π + π − ) normalized to σ (e + e − → μ + μ − ). Results have been obtained for q 2 down to the physical threshold.

1 data table

No description provided.


Study of Electron-Positron Annihilation into pi+pi- at 775 MeV with the Orsay Storage Ring

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Rev.Lett. 20 (1968) 126-129, 1968.
Inspire Record 54563 DOI 10.17182/hepdata.21756

None

1 data table

No description provided.


Study of electron-positron annihilation into pi-plus pi-minus on the rho-neutral resonance

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Lett.B 28 (1969) 508-512, 1969.
Inspire Record 56683 DOI 10.17182/hepdata.29076

The electromagnetic form factor of the pion has been determined in the ϱ o resonance region by measuring the absolute cross section of the reaction e + e − → π + π − with the Orsay storage ring. More than 800 pion pairs have been detected. The excitation curve has been fitted with a Breit-Wigner formula which leads to the following values: σ peak = (1.69 ± 0.21) 10 −30 cm 2 ; m ϱ = (770 ± 4) MeV ; Γ ϱ = (111 ± 6) MeV . The partial width of the ϱ o going into e + e − thus obtained is: Γ ϱ → e + e − =(7.36±0.7) keV .

1 data table

No description provided.


$\pi^+$ $\pi^-$ production in $e^+$ $e^-$ collisions and $\rho$-$\omega$ interference

Augustin, J.E. ; Benaksas, D. ; Buon, J. ; et al.
(1969) 35, 1969.
Inspire Record 58289 DOI 10.17182/hepdata.37427

None

1 data table

RELATIVE PRODUCTION OF PION PAIRS WITHOUT RADIATIVE CORRECTIONS.


pi+ pi- production by e+ e- annihilation in the rho energy range with the Orsay storage ring

Benaksas, D. ; Cosme, G. ; Jean-Marie, B. ; et al.
Phys.Lett.B 39 (1972) 289-293, 1972.
Inspire Record 73648 DOI 10.17182/hepdata.28321

A large solid angle detector has been used to observe two body events produced by electron-positron collisions in the Orsay storage ring. From the π + π − excitation curve in the ϱ region we have deduced the amplitude and the phase of the ω-ϱ interference, and the ϱ resonance paramaters: M ϱ = (775.4±7.3) MeV, Γ ϱ = (149.6 ± 23.2) MeV, √ B ( ω → π + π − ) = 0.19 ± 0.05, φ = (85.7 ± 15.3) 0 , σ ( e + e − → ϱ ) = (1.00 ± 0.13) μ b at S = M ϱ 2 , B ( ϱ → e + e − = (4.1 ± 0.5) × 10 −5 , Γ ( ϱ → e + e − ) = (6.1 ± 0.7) keV, ( g ϱ 2 /4 π ) = 2.26 ± 0.25, ( g ϱππ 2 /4 π ) = 2.84 ± 0.50.

1 data table

STATISTICAL ERRORS ONLY. CROSS SECTION AT RHO0 PEAK IS 1.00 +- 0.13 MUB FROM FIT.


Pion Form-Factor from 480-MeV to 1100-MeV

Quenzer, A. ; Ribes, M. ; Rumpf, F. ; et al.
Phys.Lett.B 76 (1978) 512-516, 1978.
Inspire Record 134061 DOI 10.17182/hepdata.27443

The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .

1 data table

No description provided.