Omega-neutral production by e-plus e-minus annihilation

Augustin, J.E. ; Benaksas, D. ; Buon, J. ; et al.
Phys.Lett.B 28 (1969) 513-516, 1969.
Inspire Record 56682 DOI 10.17182/hepdata.29065

The reaction e + e − → ω o has been measured by detecting the charged pions of the π + π − π o decay mode of the ω o. A partial decay width of ω o in e + e − : Γ e + e − =0.94±0.18 keV is deduced from this result.

1 data table

FITTED, BACKGROUND SUBTRACTED, PEAK OMEGA CROSS SECTION, CORRECTED FOR UNOBSERVED DECAYS, IS 1.82 +- 0.34 MUB. TABULATED ASSUMING CENTRAL ENERGY IS 782.6 MEV. VACUUM POLARIZATION AND RADIATIVE CORRECTIONS APPLIED.


Omega production by e+ e- annihilation

Benaksas, D. ; Cosme, G. ; Jean-Marie, B. ; et al.
Phys.Lett.B 42 (1972) 507-510, 1972.
Inspire Record 84977 DOI 10.17182/hepdata.28178

A large solid angle detector has been used to observe π + π − π 0 events produced, at the ω energy, by electron-positron collisions in the ORSAY storage ring. From the ω excitation curve we have deduced: σ ( e + e − → ω 3 π ) = (180 ± 0.20) μ b, Γ = (9.1 ± 0.8) MeV and with B( ω → π + π − π 0 ) = 0.898 ± 0.045 we have calculated Γ e + e − = (0.76 ± 0. 08) keV and g 2 ω 4π = 18.4 ± 1.8 .

2 data tables

EXPERIMENTAL CROSS SECTION INCLUDING RADIATIVE EFFECTS.

FITTED CROSS SECTION AT OMEGA PEAK, RADIATIVELY CORRECTED.


Cross-section of the Reaction $e^+ e^- \to \pi^+ \pi^- \pi^0$ for Center-of-mass Energies From 750-{MeV} to 1100-{MeV}

Cordier, A. ; Delcourt, B. ; Eschstruth, P. ; et al.
Nucl.Phys.B 172 (1980) 13-24, 1980.
Inspire Record 140174 DOI 10.17182/hepdata.34511

We present the results obtained with the magnetic detector DM1 at the Orsay storage ring ACO for the reaction e + e − → π + π − π 0 from 483 to 1100 MeV in the center of mass. Our data show without ambiguity an interference effect between the ω and φ mesons, which corresponds to a negative coupling constant product ratio Re( g γω g ω →3 π / g γφ g φ →3 π ) ; however our measurements above the φ, performed using kinematical analysis, can only be explained by a higher energy contribution. In addition, the parameters of the ω have been obtained with an improved accuracy compared to other experiments, and particularly the branching ratio B ω →e + e − = (6.75±0.69) × 10 −5 . We confirm that the reaction e + e − → π + π − π 0 proceeds essentially via a quasi-two-body state ϱπ , at the energy of the φ.

1 data table

FITTED CROSS SECTION AT OMEGA PEAK IS 1410 +- 130 NB AND AT PHI PEAK IS 615 +- 55 NB.