Study of electron-positron annihilation into pi-plus pi-minus on the rho-neutral resonance

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Lett.B 28 (1969) 508-512, 1969.
Inspire Record 56683 DOI 10.17182/hepdata.29076

The electromagnetic form factor of the pion has been determined in the ϱ o resonance region by measuring the absolute cross section of the reaction e + e − → π + π − with the Orsay storage ring. More than 800 pion pairs have been detected. The excitation curve has been fitted with a Breit-Wigner formula which leads to the following values: σ peak = (1.69 ± 0.21) 10 −30 cm 2 ; m ϱ = (770 ± 4) MeV ; Γ ϱ = (111 ± 6) MeV . The partial width of the ϱ o going into e + e − thus obtained is: Γ ϱ → e + e − =(7.36±0.7) keV .

1 data table

No description provided.


Pion Form-Factor from 480-MeV to 1100-MeV

Quenzer, A. ; Ribes, M. ; Rumpf, F. ; et al.
Phys.Lett.B 76 (1978) 512-516, 1978.
Inspire Record 134061 DOI 10.17182/hepdata.27443

The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .

1 data table

No description provided.