Measurement of the decay of the Upsilon (1S) and Upsilon (2S) resonances to muon pairs

The Crystal Ball collaboration Kobel, M. ; Antreasyan, D. ; Bartels, H.W. ; et al.
Z.Phys.C 53 (1992) 193-206, 1992.
Inspire Record 306832 DOI 10.17182/hepdata.14771

Using the Crystal Ball detector at thee+e− storage ring DORIS II, we have measured the branching fraction to muon pairsBμμ of the Υ(

2 data tables

Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above. The storage ring SQRT(S) has a 7.9 +- 0.2 MeV energy spread around the values given.

Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above.The storage ring SQRT(S) has a 8.2 +- 0.3 MeV energy spread around the values given.


Inclusive $\pi^0$ and $\eta$ Meson Production in Electron Positron Interactions at $\sqrt{s}=10$-{GeV}

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Z.Phys.C 46 (1990) 15, 1990.
Inspire Record 278933 DOI 10.17182/hepdata.15301

We report on a high statistics study of π0 and η production in continuum events and in direct decays of the Γ(1S) and Γ(2S) resonances. The measured production rates per event are\(\left\langle {n_{\pi ^0 } } \right\rangle\)=3.22 ± 0.07 ± 0.31 (3.97 ± 0.23 ± 0.38) and 〈nη〉=0.19 ± 0.04 ± 0.04 (0.40 ± 0.14 ± 0.09) for continuum events (direct Γ(1S) decays).

6 data tables

First data point in table is from the continuum at sqrt(s)=9.46 GeV.

First data point in table is from the continuum at sqrt(s)=9.46 GeV.

PI0 spectrum in the continuum.

More…

Inclusive $\phi$ Meson Production in Electron - Positron Interactions in the Energy Region of the $\Upsilon$ Resonances

The ARGUS collaboration Albrecht, H. ; Bockmann, P. ; Glaser, R. ; et al.
Z.Phys.C 41 (1989) 557, 1989.
Inspire Record 262551 DOI 10.17182/hepdata.15528

We report on a high precision measurement of ϕ-meson production in continuum events and in direct decays of the Υ(1S)- and Υ(2S)-mesons. The ratio of the total production rate of ϕ-mesons in direct Υ(1S)- and Υ(2S)-decays over that in continuum events is 1.32±0.08±0.09 and 1.07±0.13±0.11 respectively. This is compatible with the corresponding ratio obtained for lighter mesons, but is appreciably smaller than the relative baryon production rate.

6 data tables

PHI meson cross section on the continuum.

Differential particle density for PHI mesons in decays of upsilon(1S) and upsilon(2S).

No description provided.

More…

THRUST DISTRIBUTIONS AND DECAYS OF THE UPSILON BOUND STATES

Peterson, D. ; Bohringer, T. ; Franzini, P. ; et al.
Phys.Lett.B 114 (1982) 277-281, 1982.
Inspire Record 181188 DOI 10.17182/hepdata.30893

We have studied the topologies of hadronic events in e + e - annihilation data taken in the region of the upsilon resonances with the non-magnetic CUSB detectors at CESR. Using a thrust-like variable we compare the decay of ϒ, ϒ′ and ϒPrime; find for ϒ″ a significant excess of high thrust events, which we interpret as evidence for electric dipole transitions.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Charged Hadron Production in $e^+ e^-$ Annihilation in the $\Upsilon$ and $\Upsilon^\prime$ Region

The LENA collaboration Niczyporuk, B. ; Zeludziewicz, T. ; Chen, K.W. ; et al.
Z.Phys.C 9 (1981) 1, 1981.
Inspire Record 164397 DOI 10.17182/hepdata.1354

Charged hadron production ine+e− annihilation is studied in the 7 to 10 GeV CM energy region and at the Υ (9.46) and Υ′ (10.01) resonances with the LENA detector at DORIS. The statistical moments of the charged multiplicities are studied. The data show KNO scaling behaviour and suggest the presence of long range correlations. An average charged multiplicityrise of Δn(Υ)=0.55±0.19 and Δn(Υ′)=1.26±0.29 over the continuum is observed for the Υ and Υ′ direct decays. The jet structure of the Υ and Υ′ direct decays is investigated using the charged particles. The polar angular distributions of the jet axis behave like 1+α(T) cos2θ with 〈α(T)〉Υ=0.7±0.3 and 〈α(T)〉Υ′=0.6±0.4. The 〈α(T)〉Υ value is in agreement with the QCD vector gluon assignment and excludes scalar gluons by more than four standard deviations.

3 data tables

No description provided.

No description provided.

No description provided.


UPSILON-prime (10.01) RESONANCE PARAMETERS

The LENA collaboration Niczyporuk, B. ; Zeludziewicz, T. ; Chen, K.W. ; et al.
Phys.Lett.B 99 (1981) 169-173, 1981.
Inspire Record 155275 DOI 10.17182/hepdata.27126

The resonance parameters of the ϒ′(10.01) were measured using the LENA detector at the DORIS e + e − storage ring. We obtained a mass of M ( ϒ ′) = (10 013.6 ± 1.2 ± 10.0) MeV and an electronic width of Γ ee ( ϒ ′) = (0.53 ± 0.07 −0.05 +0.09 keV. The upper limit set to the μ-pair branching ratio is 3.8% which implies a lower limit on the total ϒ′ width of 14 keV. Together with out previous measurement of the ϒ parameters we obtain a mass difference M(ϒ′) − M(ϒ) = (552.0 ± 1.3 ± 10.0) MeV and Γ ee (ϒ′) Γ ee (ϒ) = 0.43 ± 0.07 −0.00 +0.05 .

1 data table

HADRONIC CROSS SECTION IN REGION OF UPSI(10020)0.


Total Cross-section for Hadron Production by $e^+ e^-$ Annihilation Between 9.4-{GeV} and 9.5-{GeV}

The DESY-Hamburg-Heidelberg-Munich collaboration Bock, P. ; Heinzelmann, G. ; Pietrzyk, B. ; et al.
Z.Phys.C 6 (1980) 125, 1980.
Inspire Record 153896 DOI 10.17182/hepdata.14364

The total cross section fore+e− annihilation into hadrons for center of mass energies from 9.4 to 9.5 GeV has been measured with the nonmagnetic DESY-Heidelberg detector at DORIS. A value ofR=σhad/σµµ=3.8±0.7 for the continuum region around the Υ (9.46) resonance has been determined. The ratioΓeeΓhad/Γtot of electronic, hadronic and total widths has been reevaluated to be (1.00±0.23) keV for the Υ resonance and (0.37±0.16) keV for the Υ′. In addition, a search for directly produced pohotons from Υ decays of the type Υ→γ+gluon+gluon has been performed. The Υ decay into muon pairs has also been searched for.

1 data table

TOTAL CROSS SECTION FOR THE CONTINUUM REGIONS AROUND THE UPSI(9460)0 AND UPSI(10020)0 RESONANCES.


Observation of Three Upsilon States

The CLEO collaboration Andrews, D. ; Berkelman, Karl ; Billing, M. ; et al.
Phys.Rev.Lett. 44 (1980) 1108, 1980.
Inspire Record 152393 DOI 10.17182/hepdata.20733

Three narrow resonances have been observed in e+e− annihilation into hadrons at total energies between 9.4 and 10.4 GeV. Measurements of mass spacing and ratios of lepton pair widths support the interpretation of these "ϒ" states as the lowest triplet-S levels of the bb¯ quark-antiquark system.

1 data table

No description provided.


Evidence for a Narrow Resonance at 10.01-GeV in electron-Positron Annihilations

Darden, C.W. ; Hasemann, H. ; Krolzig, A. ; et al.
Phys.Lett.B 78 (1978) 364-365, 1978.
Inspire Record 131898 DOI 10.17182/hepdata.27427

We observe evidence for a secon narrow resonance in the reation e + e − → hadrons at √s around 10 GeV using the DASP detector at the DORIS storage ring. The mass of the resonance is (10.01 ± 0.02) GeV; its width is in agreement with the storage ring resolution of ≈ 9 MeV. From the integrated cross section, an electronic width of Λ ee = (0.35 ± 0.14) KeV is derived.

1 data table

No description provided.


Observation of a Narrow Resonance at 10.02-GeV in e+ e- Annihilations

Bienlein, J.K. ; Horber, E. ; Leissner, M. ; et al.
Phys.Lett.B 78 (1978) 360-363, 1978.
Inspire Record 131524 DOI 10.17182/hepdata.45244

The ϒ′ state has been observed as a narrow resonance at M ( ϒ ′) = 10.02 ± 0.02 GeV in e + e − annihilations, using a NaI and lead-glass detector in the DORIS storage ring at DESY. The ratio Г ee Г had /Г tot of electronic, hadronic, and total widths has been measured to be 0.32 ± 0.13 keV. The parameters of the Г particle have also been determined to be/ M (Г)

2 data tables

The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.

The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.