Polarization transfer in the He-4(e(pol.),e' p(pol.)H-3 reaction.

Dieterich, S. ; Bartsch, P. ; Baumann, D. ; et al.
Phys.Lett.B 500 (2001) 47-52, 2001.
Inspire Record 536853 DOI 10.17182/hepdata.31423

Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for elastic ep scattering. The results are consistent with a recent fully relativistic calculation which includes a predicted medium modification of the proton form factor based on a quark-meson coupling model.

2 data tables

No description provided.

No description provided.


Measurement of the neutral weak form factors of the proton.

The HAPPEX collaboration Aniol, K.A. ; Armstrong, D.S. ; Baylac, M. ; et al.
Phys.Rev.Lett. 82 (1999) 1096-1100, 1999.
Inspire Record 478059 DOI 10.17182/hepdata.31319

We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point (theta_lab = 12.3 degrees and Q^2=0.48 (GeV/c)^2) is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor G_E^s. The result, A=-14.5 +- 2.2 ppm, is consistent with the electroweak Standard Model and no additional contributions from strange quarks. In particular, the measurement implies G_E^s + 0.39G_M^s = 0.023 +- 0.034 (stat) +- 0.022 (syst) +- 0.026 (delta G_E^n), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

1 data table

Longitudinally polarized beam. C=L and C=R means left- and right polarization. The second systematic uncertainty arises from the estimated uncertainty inthe neutron electromagnetic from factor.


Measurement of the vector analyzing power in elastic electron proton scattering as a probe of double photon exchange amplitudes.

The SAMPLE collaboration Wells, S.P. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.C 63 (2001) 064001, 2001.
Inspire Record 524209 DOI 10.17182/hepdata.31444

We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.

1 data table

Polarized beam.


Parity violation in elastic electron proton scattering and the proton's strange magnetic form-factor.

The SAMPLE collaboration Spayde, D.T. ; Averett, T. ; Barkhuff, D. ; et al.
Phys.Rev.Lett. 84 (2000) 1106-1109, 2000.
Inspire Record 507265 DOI 10.17182/hepdata.31230

We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92 +- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.

1 data table

Polarized beam. FORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GM_S) is in nucleon magnetic FF.


First measurement of the polarization transfer on the proton in the reactions H (e (polarized), e-prime p (polarized)) and D (e (polarized), e-prime p (polarized))

Eyl, D. ; Frey, A. ; Andresen, H.G. ; et al.
Z.Phys.A 352 (1995) 211-214, 1995.
Inspire Record 406592 DOI 10.17182/hepdata.16499

The measurement of the polarisation transfer to the proton in the reactions\(H(\vec e,e'\vec p)\) and\(D(\vec e,e'\vec p)\) performed with longitudinally polarised electrons in quasi-free kinematics is presented. The coincidence measurement was executed atQ2≈8fm−2 using the 855 MeV, c.w. beam of the Mainz Microtron MAMI. The recoil polarisation was determined by means of a carbon analyser. The experiment shows that the binding of the nucleon does not modify the polarisationPx of the recoil proton within an error ofΔPx/Px≈10%. The measured polarisation agrees with recent theoretical predictions. Implications for the measurement of the electric form factor of the neutron using the\(D(\vec e,e'\vec n)\) reaction are discussed.

1 data table

No description provided.


ELECTRON - PROTON SCATTERING AT LOW MOMENTUM ENERGIES

Lehmann, P. ; Taylor, R.E. ; Wilson, Richard ;
Phys.Rev. 126 (1962) 1183, 1962.
Inspire Record 16521 DOI 10.17182/hepdata.26811

We have measured the electron-proton scattering cross section at 248.9 Mev, 104.81°; 209.6 Mev, 149.75°; and 139.3 Mev, 104.19°. We find the following values: F1=0.767±0.025, F2=0.707±0.028, and F1F2=1.085±0.025 at −q2=2.98 f−2. F=0.902±0.011 at −q2=1.05 f−2. The last result agrees with previous measurements. The others are new contributions.

2 data tables

No description provided.

No description provided.


Electromagnetic form-factors of the proton at low four-momentum transfer

Borkowski, F. ; Peuser, P. ; Simon, G.G. ; et al.
Nucl.Phys.A 222 (1974) 269-275, 1974.
Inspire Record 94754 DOI 10.17182/hepdata.37116

Electron-proton elastic scattering cross sections were measured at low four-momentum transfers squared ( q 2 from 0.13 to 2.15 fm −2 ) at six different energies between 150 and 275 MeV. The electric ( G E ) and magnetic ( G M ) form factors of the proton have been determined by Rosenbluth plots and independently by using analytical functions for the form factors to fit the cross sections. The electric form factor is found to deviate significantly from the dipole fit. From the slope of the form factor functions at q 2 = 0 the rms radii of the charge and the magnetic moment distribution were determined. The charge rms radius is found to be more than 10% larger than the value given by the dipole fit.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Electromagnetic Form-Factors of the Proton at Low Four-Momentum Transfer

Borkowski, F. ; Peuser, P. ; Simon, G.G. ; et al.
Nucl.Phys.B 93 (1975) 461-478, 1975.
Inspire Record 850 DOI 10.17182/hepdata.31992

The 300 MeV electron linear accelerator of Mainz has been used to measure the angular dependence of the electron-proton elastic scattering cross sections at seven different energies for squared four-momentum transfers between 0.13 and 4.7 fm −2 . The proton form factors have been extracted from the cross sections by means of Rosenbluth plots and by fitting parametrized analytical functions directly to the cross sections. The best fit is compared to the data of other laboratories. The previously reported deviations from the dipole fit have been confirmed. From the form factors at q 2 <0.9 fm 2 the proton r.m.s. radius has been determined. A determination of the spectral function of the nucleon isovector form factor G E V in the time-like is obtained using a realistic ϱ resonance.

9 data tables

No description provided.

No description provided.

No description provided.

More…

INVESTIGATION OF ELASTIC ELECTRON - PROTON SCATTERING IN THE REGION OF SQUARED MOMENTUM TRANSFERS 0.12-F**-2 <= q**2 <= 0.5-F**-2

Akimov, Yu.K. ; Arvanov, A.N. ; Badalian, G.V. ; et al.
Sov.J.Nucl.Phys. 29 (1979) 474, 1979.
Inspire Record 133691 DOI 10.17182/hepdata.18481

None

1 data table

No description provided.


Elastic Electron-Deuteron Scattering

Grossetete, B. ; Drickey, D. ; Lehmann, P. ;
Phys.Rev. 141 (1966) 1425-1434, 1966.
Inspire Record 944959 DOI 10.17182/hepdata.26656

We present results on elastic electron-deuteron experiments performed at Orsay. The range of momentum transfers is 0.6 to 2 F−2. Two kinds of measurements have been taken detecting the scattered electron: one with a solid CD2 target, the other with a liquid target. The data are analyzed with the nonrelativistic theory, which gives slightly positive neutron form factors and a magnetic neutron form factor nearly equal to the magnetic proton form factor.

3 data tables

No description provided.

No description provided.

No description provided.