Production of Charmed Particles in 250-GeV mu+ - Iron Interactions

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Nucl.Phys.B 213 (1983) 31-64, 1983.
Inspire Record 180921 DOI 10.17182/hepdata.46965

Dimuon and trimuon events produced by the interaction of 250 GeV muons in an iron target have been studied and are shown to originate predominantly from charm production. The data are used to measure the contribution of charm to the nucleon structure function F 2 . The cross sections for real photoproduction ( Q 2 =0) of charm in the current fragmentation region are derived as a function of photon energy and are found to be ∼0.6% of the total, hadronic photoproduction cross section in this energy range. The measured cross sections are found to be well represented by the photon-gluon fusion model. The charmed quark fragmentation function is obtained by using this model to fit the measured decay muon energy distribution and is found to be well represented by exp(1.6±1.6) Z . The data are used to study the momentum distribution of the gluons in the nucleon. An upper limit of 1.4% (90% confidence level) is set on the branching ratio D→ μν and a model-dependent upper limit on the branching ratio F→ μν is derived.

9 data tables

The charm contribution to the nucleon structure function from the dimuon data.

No description provided.

No description provided.

More…

Charm Production in Deep Inelastic Muon - Iron Interactions at 200-{GeV}/$c$

The European Muon collaboration Arneodo, M. ; Aubert, J.J. ; Bassompierre, G. ; et al.
Z.Phys.C 35 (1987) 1, 1987.
Inspire Record 230629 DOI 10.17182/hepdata.15765

Dimuon and trimuon events have been studied in deep inelastic muon scattering on an iron target at an incident muon energy of 200 GeV. The events are shown to originate mainly from charm production. Comparison of the measured cross sections with data taken at higher muon energies shows that charm production originates predominantly from transverse virtual photons. Within the framework of the photon gluon fusion model this indicates that the parity of the gluon is odd.

1 data table

No description provided.