Exclusive $\rho^0$, $\omega$ and $\phi$ Electroproduction

Cassel, D.G. ; Ahrens, L.A. ; Berkelman, Karl ; et al.
Phys.Rev.D 24 (1981) 2787, 1981.
Inspire Record 166020 DOI 10.17182/hepdata.24050

We have measured exclusive ρ0, ω, and φ meson electroproduction at the Cornell Wilson Synchrotron. The final ρ0 data sample included 4637 four-constraint e+p→e+π++π−+p events, with incident energy E=11.5 GeV and electroproduction variables Q2 and W in the region 0.7<Q2<4 GeV2 and 1.9<W<4 GeV. We find that the width of the forward ρ0 diffraction peak increases rapidly as the lifetime of the intermediate hadron states decreases below cΔτ=1 fm and that the peak is wider for longitudinal ρ0 than it is for transverse ρ0. The longitudinal-transverse cross-section ratio Rp=σLσT, obtained assuming s-channel helicity conservation, becomes constant at high Q2. At fixed W the diffractive vector-meson-dominance (VMD) model reproduces the Q2 dependence of our cross section, σ=(σT+εσL), but is is not able to account for the rapid decrease in the cross section with increasing W we observe. We find that σωσρ depends on W but is independent of Q2 for 0.7<Q2<3 GeV2 and 2.2<W<3.7 GeV. However, σω is substantially larger than the diffractive VMD cross section. Our results for σφ are consistent with the Q2 dependence of the diffractive VMD model for 0.8<Q2<4 GeV2 and 2<W<3.7 GeV, but this model again fails to predict the W dependence we observe.

8 data tables

FOUR CHANNEL FIT TO TWO PION PRODUCTION ASSUMING NO INTERFERENCE.

DEPENDENCE OF TOTAL, LONGITUDINAL (L) AND TRANSVERSE (U) DIFFERENTIAL CROSS SECTIONS ON C*DELTA(TAU), THE FORMATION TIME FOR VIRTUAL INTERMEDIATE HADRON STATES. DELTA(TAU) IS 1/DELTA(E) WHERE DELTA(E) IS E(RF=LAB,P=3) - NU = SQRT(NU**2 + Q2 + M(RHO)**2) - NU.

No description provided.

More…

Electroproduction of $\rho^0$ Mesons

Cohen, I. ; Erickson, R. ; Messing, F. ; et al.
Phys.Rev.D 25 (1982) 634, 1982.
Inspire Record 152921 DOI 10.17182/hepdata.47139

Cross sections for ρ0 electroproduction measured in a streamer-chamber experiment are separated into elastic (ep→epρ0) and inelastic production channels. For the elastic channel, the total cross section and t dependence are presented. For the inelastic channel (1σ)dσdz, (1σ)dσdpT2, and a density matrix element are shown and compared to quark-parton-model predictions. The ratio of ρ0 to direct π0 production is found to be 2.0±0.5±0.3, where the first error is statistical, and the second error is systematic.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Exclusive Vector Meson Production in Muon - Proton Scattering

del Papa, C. ; Dorfan, David E. ; Flatte, Stanley M. ; et al.
Phys.Rev.D 19 (1979) 1303, 1979.
Inspire Record 130570 DOI 10.17182/hepdata.24312

From a muon-proton scattering experiment with a streamer chamber at the Stanford Linear Accelerator we present results in the ranges 0.3<Q2<4.7 GeV2 and 1.7<W<4.7 GeV for the reactions μ+p→μpV where V is a vector meson (ρ0, ω, or φ). It is shown that in ρ production the skewing parameter and the longitudinal-transverse ratio change significantly as Q2 increases above 1 GeV2. The cross section for ρ0 production as a function of Q2 falls below the vector-meson-dominance prediction. The ratio of the cross section for exclusive vector-meson production to the total cross section falls by a factor of 10 between photoproduction and a Q2 of 2 GeV2, yet the ratio of ω to ρ production remains constant at the photoproduction value out to Q2>2 GeV2.

4 data tables

THE ABSOLUTE TOTAL CROSS SECTION IS FROM A FIT TO THE MIT-SLAC ELECTRON SCATTERING DATA BY W. ATWOOD AND S. STEIN.

No description provided.

FOR 0.6 < M(PI+ PI-) < 0.9 GEV, USING THE METHOD OF MOMENTS.

More…

Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

10 data tables

DIPION CHANNEL CROSS SECTION.

THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).

No description provided.

More…