Differential cross section for the reaction $^2$H(γ,p)n from 133 to 158 MeV

Wallace, P.A. ; Annand, J.R.M. ; Anthony, I. ; et al.
Nucl.Phys.A 532 (1991) 617-633, 1991.
Inspire Record 1389763 DOI 10.17182/hepdata.36693

The cross section for the reaction 2H(γ, p)n has been measured at laboratory photon energies Eγ = 133−158 MeV and c.m. angles between 30° and 150°. The reaction was induced by a tagged bremsstrahlung photon beam incident on a liquid deuterium target. The uncertainty in the absolute cross sections is ⩽ 5%. There is now reasonable agreement between recent measurements in this energy region and the overall data set now defines the cross section sufficiently well to provide a test of current models of the reaction.

2 data tables

No description provided.

No description provided.


Two-body disintegration of the deuteron with 0.8-GeV to 1.8-GeV photons

Freedman, S.J. ; Geesaman, D.F. ; Gilman, Ronald A. ; et al.
Phys.Rev.C 48 (1993) 1864-1878, 1993.
Inspire Record 365233 DOI 10.17182/hepdata.26023

The differential cross section for the reaction H2(γ,p)n has been measured at several center-of-mass angles ranging from 50° to 143° for photon energies between 0.8 and 1.8 GeV. The experiment was performed at the SLAC-NPAS facility with the use of the 1.6 GeV/c spectrometer to detect the high energy protons produced by a bremsstrahlung beam directed at a liquid deuterium target. Contributions from concurrent disintegration by the residual electron beam were determined by measuring the proton yield without the Cu photon radiator. At angles not very far from 90°, the energy dependence of the cross sections is consistent with predictions of scaling using counting rules for constituent quarks. At least one theoretical calculation based on a meson-baryon picture of the reaction is able to reproduce the magnitude and energy dependence of the 90° cross section. The angular distribution exhibits a large enhancement at backward angles at the higher energies.

1 data table

THE QUOTED ERRORS ARE STATISTICAL ONLY.