MEASUREMENT OF THE POLARIZATION FOR THE REACTIONS K+ N ---> K+ N AND K0 P AT 1.06-GEV/C, 1.28-GEV/C, 1.39-GEV/C AND 1.49-GEV/C

Nakajima, K. ; Isagawa, S. ; Ishimoto, S. ; et al.
Phys.Lett.B 112 (1982) 75-79, 1982.
Inspire Record 179758 DOI 10.17182/hepdata.30955

The polarization for the K + n elastic and charge-exchange reactions was measured at the momenta of 1.06, 1.28, 1.39 and 1.49 GeV/ c . It was found to be negative for the K + n elastic process and generally positive for the charge-exchange process. The present results are compared with the predictions of phase shift analyses.

8 data tables

No description provided.

No description provided.

No description provided.

More…

The reactions $k^{+}d \to k^{+}d, k^{+}d \to k^{+}pn$ and $k^{+}d \to k^{0}pp$ at 3 Gev/$c$ with an investigation of $k^+n$ scattering

Buchner, K. ; Dehm, G. ; Geist, Walter M. ; et al.
Nucl.Phys.B 44 (1972) 110-124, 1972.
Inspire Record 75078 DOI 10.17182/hepdata.32864

As a partial result of an analysis of K + d interactions at 3 GeV/ c produced in the 81 cm Saclay bubble chamber, we present data on K + differential cross sections for the following reactions: K + d → K + d, K + d → K + pn, K + d → K 0 pp . A set of parameters describing the K + n elastic scattering has been obtained from a simulataneous fit, based on the Glauber model. to the three experimental differential cross sections and to the K + d total cross section, giving α n = 1.7 ± 0.5 GeV −2 for the slope α n of the differential cross section, and ρ n = −0.16 ± 0.3 for the ratio of the real to the imaginary part of the forward scattering amplitude. The D-wave function of the deuteron has been found to give a non-negligible contribution to the coherent reaction.

6 data tables

No description provided.

No description provided.

No description provided.

More…

The reaction k+ d ---> k0 p p at 4.6 gev/c

Dehm, G. ; Geist, Walter M. ; Goebel, G. ; et al.
Nucl.Phys.B 60 (1973) 493-504, 1973.
Inspire Record 83917 DOI 10.17182/hepdata.32493

In an experiment with the CERN 2m deuterium bubble chamber the reaction K + d→K o pp (1) and the related reaction K + n→K o p (2) are studied at an incident momentum of 4.6 GeV/ c . The cross section for the latter reaction is found to be slightly larger than the cross section for the reaction K − p → K o n at the same energy. The corresponding differential cross sections agree within the rather large uncertainties. The forward amplitude for reaction (2) is predominantly real. Moreover, the total and forward differential charge exchange cross section values are compatible with those predicted on the basis of an SU (3) sum rule. A comparison of the K ± -charge exchange differential cross sections with the predictions of a Regge pole model is also presented.

2 data tables

No description provided.

SMALL -T DEUTERIUM CORRECTION APPLIED USING MC GEE WAVE FUNCTION (PAPER ALSO GIVES UNCORRECTED AND HULTHEN CORRECTED DATA).


A Comparison of K+- n Charge Exchange Reactions at 8.5-GeV/c and 13-GeV/c

Gilchriese, M.G.D. ; Dunwoodie, W.M. ; Fieguth, T.H. ; et al.
Phys.Rev.Lett. 40 (1978) 6, 1978.
Inspire Record 120363 DOI 10.17182/hepdata.20886

The cross sections for the line-reversed reaction pairs K+n→K0p and K−p→K¯0n, and K+p→K0Δ++ and K−n→K¯0Δ− have been determined with high statistics and good relative normalization at 8.36 and 12.8 GeV/c in a spectrometer experiment at Stanford Linear Accelerator Center. The cross sections for the K+-induced reactions are larger than for the K−, contrary to the expectations of weakly-exchange-degenerate Regge-pole models. The ratio of the reaction cross sections is about the same as at lower energies and shows little change with momentum transfer.

4 data tables

Axis error includes +- 11/11 contribution.

Axis error includes +- 11/11 contribution.

Axis error includes +- 11/11 contribution.

More…

A Study of K+ n Charge Exchange at 2-GeV/c-3-GeV/c

Banerjee, S. ; Campbell, J.R. ; Hall, G. ; et al.
Nucl.Phys.B 105 (1976) 431-444, 1976.
Inspire Record 113576 DOI 10.17182/hepdata.35965

In an experiment with the 1.5 m bubble chamber at the Rutherford Laboratory, the reaction K + d→K 0 pp has been studied at beam momenta of 2.2, 2.45 and 2.7 GeV/ c . The cross section for the reaction K + n→K 0 p has been estimated and found to be approximately twice that of the line-reversed reaction K − p → K 0 n at comparable energies. An SU(3) sum rule, due to Barger and Cline, has been tested and found not to be valid in this momentum range. The differential cross section for K + n→K 0 p has also been measured and a determination made of the imaginary to real ratio of the forward amplitude, using the optical theorem. Implications of these, and other results, for various Regge models are briefly discussed.

2 data tables

No description provided.

No description provided.