Comparison of 20 exclusive reactions at large t

White, C. ; Appel, R. ; Barton, D.S. ; et al.
Phys.Rev.D 49 (1994) 58-78, 1994.
Inspire Record 377535 DOI 10.17182/hepdata.50306

We report a study of 20 exclusive reactions measured at the AGS at 5.9 GeV/c incident momentum, 90° center of mass. This experiment confirms the strong quark flow dependence of two-body hadron-hadron scattering at large angle. At 9.9 GeV/c an upper limit had been set for the ratio of cross sections for (p¯p→p¯p)(pp→pp) at 90° c.m., with the ratio less than 4%. The present experiment was performed at lower energy to gain sensitivity, but was still within the fixed angle scaling region. A ratio R(p¯ppp)≈140 was measured at 5.9 GeV/c, 90° c.m. in comparison to a ratio near 1.7 for small angle scattering. In addition, many other reactions were measured, often for the first time at 90° c.m. in the scaling region, using beams of π±, K±, p, and p¯ on a hydrogen target. There are similar large differences in cross sections for other reactions: R(K−p→π+Σ−K−p→π−Σ+)≈112, for example. The relative magnitudes of the different cross sections are consistent with the dominance of quark interchange in these 90° reactions, and indicate that pure gluon exchange and quark-antiquark annihilation diagrams are much less important. The angular dependence of several elastic cross sections and the energy dependence at a fixed angle of many of the reactions are also presented.

21 data tables

Cross sections at 90 degrees in the centre-of-mass.

No description provided.

No description provided.

More…

Partial Waves in the K+ p Interaction Between 1.2-GeV/c and 1.7-GeV/c

Lesquoy, E. ; Muller, A. ; Triantis, F.A. ; et al.
Nucl.Phys.B 99 (1975) 346-364, 1975.
Inspire Record 99646 DOI 10.17182/hepdata.31859

A simultaneous partial-wave analysis of the three final states K + p, K ∗ (892)N and KΔ(1236) is attempted using inelastic data with large statistics at 1.21, 1.29, 1.38 and 1.69 GeV/ c as well as existing data on the elastic reaction. The constraint of unitarity, which is almost saturated by these reactions, allows one to determine the size and relative phases of the dominant partial waves and to give some limits on the others. Their variation with energy is discussed, as well as the consistency of the different sets of elastic phase shifts with the inelastic data. We also compare the predictions of the duality hypothesis with the data.

1 data table

No description provided.


Elastic scattering and single-pion production in k+ p reactions at 4.27 gev/c

Seidl, A. ;
Phys.Rev.D 7 (1973) 621-636, 1973.
Inspire Record 82569 DOI 10.17182/hepdata.22113

Elastic K+p scattering at a beam momentum of 4.27 GeV/c is studied and compared with elastic K−p scattering in order to extract the imaginary part of the non-Pomeranchukon-exchange amplitude. The single-pion-production cross sections are presented as well as production cross sections and resonance parameters for the Δ(1236), the K*+(890), and the K*+(1420). Production and decay distributions for the Δ++(1236) and the K*+(890) are presented and compared with the absorptive particle-exchange model and with Regge-pole-exchange models.

8 data tables

No description provided.

BREIT-WIGNERS PLUS PHASE SPACE TO DETERMINE RESONANCE PRODUCTION CROSS SECTIONS.

No description provided.

More…