Cross sections of common final states for K- p interactions at 8.25-GeV/c

The Athens-Democritus-Liverpool-Vienna collaboration Fry, J.R. ; Brankin, C. ; Matthews, R. ; et al.
Nucl.Phys.B 58 (1973) 408-419, 1973.
Inspire Record 83983 DOI 10.17182/hepdata.8005

Topological and channel cross sections are given for the more common final states produced in K − p interactions at 8.25 GeV/ c together with the single particle inclusive cross sections. We present cross sections for prominent resonances occurring in final states K N (nπ) and find the resonance fractions to be roughly independent of multiplicity.

3 data tables

SE FOLDED.

No description provided.

No description provided.


STUDY OF K*- (890) AND K*- (1430) PRODUCTION IN THE REACTION K- P ---> ANTI-K0 PI- P AT 100-GEV/C AND 175-GEV/C

Bromberg, C. ; Dickey, J. ; Fox, G. ; et al.
Phys.Rev.D 29 (1984) 2469-2475, 1984.
Inspire Record 205297 DOI 10.17182/hepdata.23731

The reaction K−p→K¯0π−p has been studied at 100 and 175 GeV/c and the reaction π−p→K0K−p at 50, 100, and 175 GeV/c. Both reactions are dominated by production of resonances, K*(890), K*(1430) and A2(1320), A2(2040), respectively. Production cross sections, t distributions, and decay-angular distributions are studied. Isoscalar natural-parity exchange is dominant. The energy dependence of the K* and A2 resonance production between 10 and 175 GeV/c is well described by a Regge-pole model. Our data on A2 corrects that in an earlier paper.

8 data tables

No description provided.

No description provided.

No description provided.

More…

STUDY OF THE REACTIONS K+- P ---> K0(S) PI+- P AT 30-GEV/C AND 50-GEV/C: DESCRIPTION OF THE APPARATUS AND AMPLITUDE ANALYSIS OF THE K0(S) PI SYSTEM

Cleland, W.E. ; Delfosse, A. ; Dorsaz, P.-A. ; et al.
Nucl.Phys.B 208 (1982) 189-227, 1982.
Inspire Record 184971 DOI 10.17182/hepdata.34081

The reactions K ± p→K s 0 π ± p are studied at 30 and 50 GeV/ c . Data for these reactions were obtained using the Geneva-Lausanne spectrometer whose main characteristics are: (i) large forward acceptance; (ii) high-resolution time-of-flight for recoil proton momentum measurement; (iii) high data-taking rate and on-line pattern recognition. The K ∗ (1 − ), K ∗ (2 + ), K ∗ (3 − ) and K ∗ (4 + ) resonance parameters and production cross sections are determined. The K π production amplitudes are calculated both as a function of the K π mass and of the momentum transfer. Isoscalar natural parity exchange (NPE) is dominant. The NPE amplitudes are decomposed into pomeron- f-, ω-exchange contributions, and their energy dependence between 10 and 50 GeV/ c is shown to be well-described by a Regge pole model based on the f-dominated pomeron hypothesis.

5 data tables

CORRECTED TO INCLUDE BW TAILS AND THE FRACTION OF EVENTS OUTSIDE THE T-ACCEPTANCE OF THE SPECTROMETER.

FITS OF THE FORM -A*TP*EXP(BTP) ARE MADE BY THE AUTHORS AND THE VALUES OF A AND B ARE GIVEN HERE. MASS REGIONS OF THE FIT ARE:-. K*(890) 0.84 < M <0.94 GEV. K*(1430) 1.36 < M <1.5 GEV. K*(1780) 1.68 < M <1.88 GEV.

FITS OF FORM -A*TP*EXP(BTP) ARE MADE BY THE AUTHORS AND THE VALUES OF A AND B ARE GIVEN HERE. MASS REGIONS OF THE FIT ARE:-. K*(890) 0.84 < M <0.94 GEV. K*(1430) 1.36 < M <1.5 GEV. K*(1780) 1.68 < M <1.88 GEV.

More…

Production of $\rho^\pm$, $G^\pm$(1700), $A2^\pm$, $K^{*\pm}$(890) and $K^{*\pm}$(1420) at 50-{GeV}/c

Delfosse, A. ; Dorsaz, P.A. ; Extermann, P. ; et al.
Nucl.Phys.B 183 (1981) 349-366, 1981.
Inspire Record 170363 DOI 10.17182/hepdata.34280

Mesons decaying into π 0 or η and one charged meson were studied using a liquid-argon calorimeter in a non-magnetic double-arm spectrometer. Cross sections and energy dependences are presented. The ϱ ± production mechanisms are discussed in detail: ω and π exchange contribute the largest fractions, but also A 2 exchange is present. ϱ ± production by ω exchange is shown to follow the energy behaviour predicted by the Regge trajectory α ω ( t ) = 0.4 − | t |.

2 data tables

Axis error includes +- 0.0/0.0 contribution (13 TO 25////STATISTICAL ERRORS ARE SMALLER THAN THE SYSTEMATIC ERRORS).

No description provided.


Measurement of k*- production in the reaction k- p ---> k*- p

Blieden, H.R. ; Finocchiaro, G. ; Kirz, J. ; et al.
Phys.Lett.B 39 (1972) 668-670, 1972.
Inspire Record 75745 DOI 10.17182/hepdata.41300

The K ∗− spectrum in the reaction K − +p → K ∗− +p has been measured at beam momenta 10.9, 13.4 and 15.9 GeV/ c using the missing mass technique. Production of the L(1770), and a Q-K ∗ (1420) enhancement are observed. Differential cross sections in the range of momentum transfer 0.12 < | t pp | < 0.40 (GeV/ c ) 2 are given. The L meson is observed with a width Γ = 100 ± 26 MeV. The mass spectrum between the L and 2.5 GeV does not show significant structure.

2 data tables

No description provided.

No description provided.


Production of k*(890)- and k*(1420)- in the reaction k- p ---> (k pi)- p at 25 and 40 gev/c

Antipov, Yu.M. ; Ascoli, G. ; Busnello, R. ; et al.
Nucl.Phys.B 63 (1973) 202-210, 1973.
Inspire Record 83877 DOI 10.17182/hepdata.32480

The reaction K − p → X K − p has been measured at 25 and 40 GeV/ c at the Serpukhov accelerator using the CERN-IHEP boson spectrometer. At both energies we observe production of the resonances K ∗− (890) and K ∗− (1420) in the channels K ∗− → K 0 π − and K − π 0 ; the momentum dependence of their production cross sections is found to be σ[ K ∗− (890)] ∞ p inc −1.48±0.04 and σ [ K ∗− (1420)] ∞ p inc −0.8±0.2 .

3 data tables

No description provided.

No description provided.

No description provided.


A Study of Noncharge Exchange anti-K0 pi- Production in the Reaction K- p --> anti-K0 pi- p at 4.2-GeV/c

The AMSTERDAM-CERN-NIJMEGEN-OXFORD collaboration Engelen, J.J ; Holwerda, M.J. ; Kittel, E.W. ; et al.
Nucl.Phys.B 134 (1978) 14-30, 1978.
Inspire Record 134670 DOI 10.17182/hepdata.35138

The K π − system produced in the reaction K p → K 0 π − p at 4.2 GeV/ c is studied using high-statistics bubble-chamber data. The spin-parity structure is analysed as a function of the K 0 π − mass up to 1.52 GeV. Production of K ∗ (890) and K ∗ (1420) is observed in helicity-0 and helicity-1 states. Contributions of natural and unnatural parity exchange are present. Considerable S-wave production is observed over the whole mass region considered. We also study the t ′ dependence of the K ∗ (890) and K ∗ (1420) amplitudes. A comparison of our results on K ∗ (890) production with the results of an analysis of charge-exchange K ∗ (890) production, allows the separation of I = 0 and I = 1 exchange amplitudes. Some qualitative remarks are made concerning K ∗ (1420) production.

2 data tables

No description provided.

PARTIAL WAVE ANALYSIS ASSUMING SPIN-COHERENCE TO OBTAIN SPIN-PARITY STRUCTURE AND T DEPENDENCE OF P-WAVE AND D-WAVE AMPLITUDES.


Analysis of the Reaction K- p --> K- pi- pi+ p at 40-GeV/c

The CERN-Serpukhov Boson Spectrometer Group collaboration Antipov, Yu.M. ; Ascoli, G. ; Busnello, R. ; et al.
Nucl.Phys.B 86 (1975) 381-402, 1975.
Inspire Record 90643 DOI 10.17182/hepdata.32087

The reaction K − p → K − π − π + p has been measured at 25 and 40 GeV/ c at the Serpukhov Proton Accelerator. The production cross section at 25 and 40 GeV/ c as a function of momentum transfer and K ππ mass is presented, and results of the partial-wave analysis of the K ππ system yielding information about Q(1300), K ∗ (1400) and L(1770) mesons are discussed.

3 data tables

No description provided.

K** DEFINED BY 1.30 < M(K PI PI) < 1.54 GEV.

L IS DEFINED AS THE 2- STATE WITH 1.6 < M(K PI PI) < 1.9 GEV.


Evidence for Structure in the 1+ State of the Q Region

The Aachen-Berlin-CERN-London-Vienna & Ecole Poly-Rutherford-Saclay collaborations Otter, G. ; Rudolph, G. ; Schmid, P. ; et al.
Nucl.Phys.B 106 (1976) 77-94, 1976.
Inspire Record 3373 DOI 10.17182/hepdata.35803

We have performed a partial-wave analysis of the mainly diffractively produced low-mass (K ππ ) system in the reactions K − p → K − π + π − p and K − p → K 0 π − π 0 p at 10, 14 and 16 GeV /c . We find that the dominant 1 + S ( K ∗ π ) state has possibly a two-peak structure (around 1.27 and 1.37 GeV). In contrast the 1 + S(K ϱ ) state shows one narrow peak near thershold (around 1.27 GeV). These states are found to be of different origin. The results favour the interpretation of the 1 + S(K ϱ ) as a 1 + resonance below the (K ϱ ) threshold. The t ′ pp dependence is found to be different for the 1 + and 0 − states.

2 data tables

No description provided.

No description provided.