Cross sections of common final states for K- p interactions at 8.25-GeV/c

The Athens-Democritus-Liverpool-Vienna collaboration Fry, J.R. ; Brankin, C. ; Matthews, R. ; et al.
Nucl.Phys.B 58 (1973) 408-419, 1973.
Inspire Record 83983 DOI 10.17182/hepdata.8005

Topological and channel cross sections are given for the more common final states produced in K − p interactions at 8.25 GeV/ c together with the single particle inclusive cross sections. We present cross sections for prominent resonances occurring in final states K N (nπ) and find the resonance fractions to be roughly independent of multiplicity.

3 data tables

SE FOLDED.

No description provided.

No description provided.


STUDY OF K*- (890) AND K*- (1430) PRODUCTION IN THE REACTION K- P ---> ANTI-K0 PI- P AT 100-GEV/C AND 175-GEV/C

Bromberg, C. ; Dickey, J. ; Fox, G. ; et al.
Phys.Rev.D 29 (1984) 2469-2475, 1984.
Inspire Record 205297 DOI 10.17182/hepdata.23731

The reaction K−p→K¯0π−p has been studied at 100 and 175 GeV/c and the reaction π−p→K0K−p at 50, 100, and 175 GeV/c. Both reactions are dominated by production of resonances, K*(890), K*(1430) and A2(1320), A2(2040), respectively. Production cross sections, t distributions, and decay-angular distributions are studied. Isoscalar natural-parity exchange is dominant. The energy dependence of the K* and A2 resonance production between 10 and 175 GeV/c is well described by a Regge-pole model. Our data on A2 corrects that in an earlier paper.

8 data tables

No description provided.

No description provided.

No description provided.

More…

STUDY OF THE REACTIONS K+- P ---> K0(S) PI+- P AT 30-GEV/C AND 50-GEV/C: DESCRIPTION OF THE APPARATUS AND AMPLITUDE ANALYSIS OF THE K0(S) PI SYSTEM

Cleland, W.E. ; Delfosse, A. ; Dorsaz, P.-A. ; et al.
Nucl.Phys.B 208 (1982) 189-227, 1982.
Inspire Record 184971 DOI 10.17182/hepdata.34081

The reactions K ± p→K s 0 π ± p are studied at 30 and 50 GeV/ c . Data for these reactions were obtained using the Geneva-Lausanne spectrometer whose main characteristics are: (i) large forward acceptance; (ii) high-resolution time-of-flight for recoil proton momentum measurement; (iii) high data-taking rate and on-line pattern recognition. The K ∗ (1 − ), K ∗ (2 + ), K ∗ (3 − ) and K ∗ (4 + ) resonance parameters and production cross sections are determined. The K π production amplitudes are calculated both as a function of the K π mass and of the momentum transfer. Isoscalar natural parity exchange (NPE) is dominant. The NPE amplitudes are decomposed into pomeron- f-, ω-exchange contributions, and their energy dependence between 10 and 50 GeV/ c is shown to be well-described by a Regge pole model based on the f-dominated pomeron hypothesis.

5 data tables

CORRECTED TO INCLUDE BW TAILS AND THE FRACTION OF EVENTS OUTSIDE THE T-ACCEPTANCE OF THE SPECTROMETER.

FITS OF THE FORM -A*TP*EXP(BTP) ARE MADE BY THE AUTHORS AND THE VALUES OF A AND B ARE GIVEN HERE. MASS REGIONS OF THE FIT ARE:-. K*(890) 0.84 < M <0.94 GEV. K*(1430) 1.36 < M <1.5 GEV. K*(1780) 1.68 < M <1.88 GEV.

FITS OF FORM -A*TP*EXP(BTP) ARE MADE BY THE AUTHORS AND THE VALUES OF A AND B ARE GIVEN HERE. MASS REGIONS OF THE FIT ARE:-. K*(890) 0.84 < M <0.94 GEV. K*(1430) 1.36 < M <1.5 GEV. K*(1780) 1.68 < M <1.88 GEV.

More…

Production of $\rho^\pm$, $G^\pm$(1700), $A2^\pm$, $K^{*\pm}$(890) and $K^{*\pm}$(1420) at 50-{GeV}/c

Delfosse, A. ; Dorsaz, P.A. ; Extermann, P. ; et al.
Nucl.Phys.B 183 (1981) 349-366, 1981.
Inspire Record 170363 DOI 10.17182/hepdata.34280

Mesons decaying into π 0 or η and one charged meson were studied using a liquid-argon calorimeter in a non-magnetic double-arm spectrometer. Cross sections and energy dependences are presented. The ϱ ± production mechanisms are discussed in detail: ω and π exchange contribute the largest fractions, but also A 2 exchange is present. ϱ ± production by ω exchange is shown to follow the energy behaviour predicted by the Regge trajectory α ω ( t ) = 0.4 − | t |.

2 data tables

Axis error includes +- 0.0/0.0 contribution (13 TO 25////STATISTICAL ERRORS ARE SMALLER THAN THE SYSTEMATIC ERRORS).

No description provided.


Channel Cross-sections and Two-body Reactions in $K^- p$ Interactions at 32-{GeV}/$c$

The French-Soviet & CERN-Soviet collaborations Givernaud, A. ; Denegri, D. ; Lewin, C. ; et al.
Nucl.Phys.B 160 (1979) 445-466, 1979.
Inspire Record 141995 DOI 10.17182/hepdata.34613

We present a systematic investigation of channel cross sections in K − p interactions at 32 GeV/ c . The energy dependence of these cross sections is discussed. We also investigate a few non-diffractive two-body reactions. The total cross sections of the two reactions K − p → K ∗− (890) p and K − p → K ∗− (1420) p have a markedly different energy behaviour. There is clear evidence for the reaction K − p → K ∗0 (890) N 0 (1688) ; its differnttial cross section exhibits a sharp forward slope of 24 ± 3 GeV −2 .

3 data tables

FROM AK0 P PI- FINAL STATE.

DOUBLE RESONANCE CHANNEL CROSS SECTIONS FROM BREIT-WIGNER FIT CORRECTED FOR BACKGROUND AND DIFFRACTIVE PROCESSES.

No description provided.


Measurement of k*- production in the reaction k- p ---> k*- p

Blieden, H.R. ; Finocchiaro, G. ; Kirz, J. ; et al.
Phys.Lett.B 39 (1972) 668-670, 1972.
Inspire Record 75745 DOI 10.17182/hepdata.41300

The K ∗− spectrum in the reaction K − +p → K ∗− +p has been measured at beam momenta 10.9, 13.4 and 15.9 GeV/ c using the missing mass technique. Production of the L(1770), and a Q-K ∗ (1420) enhancement are observed. Differential cross sections in the range of momentum transfer 0.12 < | t pp | < 0.40 (GeV/ c ) 2 are given. The L meson is observed with a width Γ = 100 ± 26 MeV. The mass spectrum between the L and 2.5 GeV does not show significant structure.

2 data tables

No description provided.

No description provided.


Amplitudes and Exchange Mechanisms for K* Resonances Produced by the Reactions K+- p --> K*+- p at 10-GeV/c

Baldi, R. ; Bohringer, T. ; Dorsaz, P.A. ; et al.
Phys.Lett.B 70 (1977) 377-382, 1977.
Inspire Record 126179 DOI 10.17182/hepdata.27517

We compare production of the low mass K π -resonances by K + and K − beams in the non-charge-exchange reactions K ± p → K 0 s π ± p at 10 GeV/ c . High statistics data, obtained with the same apparatus, allow extraction of the K ∗ (890) and K ∗ (1420) production amplitudes corresponding to unnatural and natural parity exchange in the t -channel. The NPE-part dominates in both charge states. Its t -dependence shows a strong crossover at t ≈ −0.3 (GeV/ c ) 2 for the K ∗ (1420). For the K ∗ (890) the crossover is weaker but it occurs at the same value of t . This behaviour can be explained by pomeron, f and ω Regge exchange contributions to the NPE amplitude. The UPE amplitudes agree, both in normalisation and t -dependence, with the expectations of π and B exchange as isolated from data for the charge exchange reaction K − p → (K − π + )n.

1 data table

No description provided.


Amplitude and Natural Parity Exchange Analysis of K+- p --> (K pi)+- p Data at 10-GeV/c

Martin, Alan D. ; Shimada, T. ; Baldi, R. ; et al.
Nucl.Phys.B 134 (1978) 392-412, 1978.
Inspire Record 122126 DOI 10.17182/hepdata.35128

High statistics data for the reactions K ± p → K S 0 π ± p at 10 GeV/ c are analysed. The K ∗ (1 − ), K ∗ (2 + ), and K ∗ (3 − ) resonance parameters and production cross sections are calculated. The Kπ production amplitudes are determined as a function of t and the produced Kπ mass. Isoscalar natural-parity-exchange (NPE) is dominant. The t dependence of the K ± NPE amplitudes have a cross-over at t = −0.3 (GeV/ c ) 2 for both K ∗ (890) and K ∗ (1420) production, being more pronounced for the K ∗ (1420). Natural-parity-exchange interference effects are isolated. The NPE amplitudes are decomposed into pomeron-, f-, and ω-exchange contributions. S-wave Kπ production is found to be consistent with the Kπ partial-wave analyses of charge-exchange reactions.

2 data tables

CORRECTED FOR BACKGROUND, BREIT-WIGNER TAILS AND T-ACCEPTANCE. SYSTEMATIC ERROR INCLUDED.

DATA FOR K PI PRODUCTION AND ANGULAR DISTRIBUTIONS ARE IN THE PRECEDING PAPER, R. BALDI ET AL., NP B134, 365 (1978).


Systematic Study of K pi Production in the Reaction K+- p --> K0(s) pi+- p: Technique and Measurements at 10-GeV/c

Baldi, R. ; Bohringer, T. ; Dorsaz, P.A. ; et al.
Nucl.Phys.B 134 (1978) 365-391, 1978.
Inspire Record 122145 DOI 10.17182/hepdata.8292

A two-arm spectrometer for simple event topologies is described. Its main characteristics are: (i) large solid-angle acceptance for the forward emitted particles, owing to the absence of magnetic-momentum analysis; (ii) high-resolution time-of-flight measurement of the recoil proton, in the momentum-transfer range 0.05 < | t | < 1 (GeV/ c ) 2 ; (iii) high data-taking rate and on-line pattern recognition.

6 data tables

No description provided.

No description provided.

K*(892)+ REGION.

More…

Analysis of the Reaction K- p --> K- pi- pi+ p at 40-GeV/c

The CERN-Serpukhov Boson Spectrometer Group collaboration Antipov, Yu.M. ; Ascoli, G. ; Busnello, R. ; et al.
Nucl.Phys.B 86 (1975) 381-402, 1975.
Inspire Record 90643 DOI 10.17182/hepdata.32087

The reaction K − p → K − π − π + p has been measured at 25 and 40 GeV/ c at the Serpukhov Proton Accelerator. The production cross section at 25 and 40 GeV/ c as a function of momentum transfer and K ππ mass is presented, and results of the partial-wave analysis of the K ππ system yielding information about Q(1300), K ∗ (1400) and L(1770) mesons are discussed.

3 data tables

No description provided.

K** DEFINED BY 1.30 < M(K PI PI) < 1.54 GEV.

L IS DEFINED AS THE 2- STATE WITH 1.6 < M(K PI PI) < 1.9 GEV.