A High Statistics Measurement of the Nucleon Structure Function F(2) (X,$Q^2$) From Deep Inelastic Muon - Carbon Scattering at High $Q^2$

The BCDMS collaboration Benvenuti, A.C. ; Bollini, D. ; Bruni, G. ; et al.
Phys.Lett.B 195 (1987) 91-96, 1987.
Inspire Record 247013 DOI 10.17182/hepdata.30107

We present results from a high statistics study of the nucleon structure function F 2 ( x , Q 2 ) measured in deep inelastic scattering of muons on carbon in the kinematic range 0.25⩽ x ⩽0.80 and Q 2 ⩾25 GeV 2 . The analysis is based on 1.5×10 6 reconstructed events recorded at beam energies of 120, 200 and 280 GeV. R = σ L / σ T is found to be independent of x in the range 0.25⩽ x ⩽0.07 and 40 GeV 2 ⩽ Q 2 ⩽200 GeV 2 with a mean value R =0.015±0.013 ( stat ) ±0.026 (syst.).

19 data tables

R=SIG(L)/SIG(T).

No description provided.

No description provided.

More…

A Re-Evaluation of the nuclear Structure Function Ratios for D, He, Li, C and Ca

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Nucl.Phys.B 441 (1995) 3-11, 1995.
Inspire Record 393377 DOI 10.17182/hepdata.32848

We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.

6 data tables

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

Additional normalization uncertainty of 0.4 pct not included.

More…

Measurement of the Interference Structure Function Xg(3) (X) in Muon - Nucleon Scattering

Argento, A. ; Benvenuti, A.C. ; Bollini, D. ; et al.
Phys.Lett.B 140 (1984) 142-144, 1984.
Inspire Record 195945 DOI 10.17182/hepdata.13025

The interference structure function xG 3 ( x ) has been measured for the first time scattering positive and negative muons of opposite helicity off a carbon target. The x dependence observed for Q 2 between 40 and 180 (GeV/c 2 ) is in good agreement with predictions of the quark-parton model. The measured ratio 2( a u Q u + a d Q d )/( Q u 2 + Q d 2 = 1.87 ± 0.25 (stat.) ± 0.24 (syst.) is consistent with the hypothesis of fractional quark charges and determines the sign of Q u − Q d to be positive.

3 data tables

No description provided.

No description provided.

No description provided.


Measurements of R(d) - R(p) and R(Ca) - R(C) in deep inelastic muon scattering

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Phys.Lett.B 294 (1992) 120-126, 1992.
Inspire Record 340582 DOI 10.17182/hepdata.29038

Results are presented on the difference in R , the ratio of longitudinally to transversely polarised virtual photon absorption cross sections, for the deuteron and the proton. They are obtained by comparing the ratio of cross sections for the deep inelastic scattering of muons from deuterium and hydrogen targets at 90 and 280 GeV incident energy. The results cover the range x =0.01–0.30, at an average Q 2 of 9 GeV 2 . The measured difference R d - R p shows no significant x dependence and is compatible with zero, as well as with expectations from perturbative QCD. We use the same method to obtain the difference R Ca - R C from cross section ratios measured on carbon and calcium targets at 90 and 200 GeV incident energy.

4 data tables

No description provided.

Average overall x values.

No description provided.

More…

Measurements of the Nucleon Structure Function in the Range 0.002-GeV**2 < x < 0.17-GeV**2 and 0.2-GeV**2 < q**2 < 8-GeV**2 in Deuterium, Carbon and Calcium

The European Muon collaboration Arneodo, M. ; Arvidson, A. ; Aubert, J.J. ; et al.
Nucl.Phys.B 333 (1990) 1-47, 1990.
Inspire Record 283347 DOI 10.17182/hepdata.33074

Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F 2 extracted from deuterium does not show a significant x dependence in the measured range of Q 2 and its Q 2 dependence is linear in log Q 2 . For calcium, a depletion of F 2 is observed at low x by 30% as compared with the values at x = 0.1 where F 2 (Ca) and F 2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q 2 . The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q 2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.

33 data tables

Deuterium data. Overall normalization error of 7 pct not included.

Deuterium data. Overall normalization error of 7 pct not included.

Deuterium data. Overall normalization error of 7 pct not included.

More…

Nuclear structure function in carbon near x = 1

The BCDMS collaboration Benvenuti, A.C. ; Bollini, D. ; Camporesi, T. ; et al.
Z.Phys.C 63 (1994) 29-36, 1994.
Inspire Record 374300 DOI 10.17182/hepdata.48235

Data from deep inelastic scattering of 200 GeV muons on a carbon target with squared four-momentum transfer 52 GeV2≤Q2≤200 GeV2 were analysed in the region of the Bjorken variable close tox=1, which is the kinematic limit for scattering on a free nucleon. At this value ofx, the carbon structure function is found to beF2C≈1.2·10−4. Thex dependence of the structure function forx>0.8 is well described by an exponentialF2C∞exp(−sx) withs=16.5±0.6.

5 data tables

No description provided.

Multiplicative factors by which F2 has to be multiplied or divided to allow for a systematic uncertainty in detector resolution.

Multiplicative factors by which F2 has to be multiplied or divided to allow for a systematic uncertainty in the beam energy.

More…

Precision measurement of structure function ratios for Li-6, C-12 and Ca-40

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Z.Phys.C 53 (1992) 73-78, 1992.
Inspire Record 319669 DOI 10.17182/hepdata.14706

The structure function ratiosF2C/F2Li,F2Ca/F2Li andF2Ca/F2C were measured in deep inelastic muonnucleus scattering at an incident muon energy of 90 GeV, covering the kinematic range 0.0085<x<0.6 and 0.8<Q2<17GeV2. The sensitivity of the nuclear structure functions to the size and mean density of the target nucleus is discussed.

3 data tables

Overall normalization error of 0.7%, due to uncertainties in target thickness, not included in the table.

Overall normalization error of 0.8%, due to uncertainties in target thickness, not included in the table.

Overall normalization error of 0.5%, due to uncertainties in target thickness, not included in the table.


Precision measurement of the structure function ratios F2 (He) / F2 (D), F2 (C) / F2 (D) and F2 (Ca) / F2 (D)

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Z.Phys.C 51 (1991) 387-394, 1991.
Inspire Record 314878 DOI 10.17182/hepdata.14935

We present the structure function ratiosF2He/F2D,F2C/F2D andF2Ca/F2D measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. The kinematic range 0.0035<x<0.65 and 0.5<Q2<90 GeV2 is covered. At lowx the three ratios are significantly smaller than unity and the size of the depletion grows with decreasingx and increasing mass numberA. At intermediatex the ratios show an enhancement of about 2% above unity for C/D and Ca/D, possibly less for He/D. There are indications of someQ2 dependence in the Ca/D data. The integrals of the structure function differencesF2A−F2D are discussed.

3 data tables

No description provided.

No description provided.

No description provided.


Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

The E665 collaboration Adams, M.R. ; Aïd, S. ; Anthony, P.L. ; et al.
Z.Phys.C 67 (1995) 403-410, 1995.
Inspire Record 394981 DOI 10.17182/hepdata.41664

Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

4 data tables

Per-nucleon cross section ratio for carbon to deuterium.

Per-nucleon cross section ratio for calcium to deuterium.

Per-nucleon cross section ratio for lead to deuterium.

More…

The A dependence of the nuclear structure function ratios

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badee̵k, B. ; et al.
Nucl.Phys.B 481 (1996) 3-22, 1996.
Inspire Record 429851 DOI 10.17182/hepdata.32712

Results are presented for six nuclei from Be to Pb on the structure function ratios F 2 A / F 2 C ( x ) and their A dependence in deep inelastic muon scattering at 200 GeV incident muon energy. The data cover the kinematic range 0.01 < x < 0.8 with Q 2 ranging from 2 to 70 GeV 2 . The A dependence of nuclear structure function ratios is parametrised and compared to various models.

6 data tables

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.003 in the ratio.

More…