A Comparison of the Structure Functions F2 of the Proton and the Neutron From Deep Inelastic Muon Scattering at High $Q^2$

The BCDMS collaboration Benvenuti, A.C. ; Bollini, D. ; Bruni, G. ; et al.
Phys.Lett.B 237 (1990) 599-604, 1990.
Inspire Record 285519 DOI 10.17182/hepdata.29734

High statistics data on the structure functions F 2 of the proton and the deutron measured with the same apparatus in deep inelastic muon scattering are used to study the ratio of structure functions of neutron and proton F 2 n / F 2 p and their difference F 2 p - F 2 n . Both measurements are consistent with predictions of the quark-parton model and of QCD.

2 data tables

No description provided.

No description provided.


A Reevaluation of the Gottfried sum

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badelek, B. ; et al.
Phys.Rev.D 50 (1994) R1-R3, 1994.
Inspire Record 358419 DOI 10.17182/hepdata.71293

We present a new determination of the nonsinglet structure function ${\mathit{F}}_{2}^{\mathit{p}}$ - ${\mathit{F}}_{2}^{\mathit{n}}$ at ${\mathit{Q}}^{2}$=4 ${\mathrm{GeV}}^{2}$ using recently measured values of ${\mathit{F}}_{2}^{\mathit{d}}$ and ${\mathit{F}}_{2}^{\mathit{n}}$/${\mathit{F}}_{2}^{\mathit{p}}$. A new evaluation of the Gottfried sum is given, which remains below the simple quark-parton model value of 1/3.

4 data tables

Errors of F2(D) are the estimated total uncertainties and those on the ratio and difference are statistical only.

Values of the Gottfried Sum Rule integral (GS) defined as the integral between X(C=MIN) and X = 0.8 of (F2(P)-F2(N))DX/X.

No description provided.

More…

A next-to-leading order QCD analysis of the spin structure function g1.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112002, 1998.
Inspire Record 471982 DOI 10.17182/hepdata.49415

We present a next-to-leading order QCD analysis of the presently available data on the spin structure function g1 including the final data from the Spin Muon Collaboration. We present results for the first moments of the proton, deuteron, and neutron structure functions, and determine singlet and nonsinglet parton distributions in two factorization schemes. We also test the Bjorken sum rule and find agreement with the theoretical prediction at the level of 10%.

7 data tables

The second systematic (DSYS) error is due to QCD evolution.

First moments of the fitted function G1 evaluated on unmeasured X regions. Total uncertainties due to experimental systematics and theoretical sourc es in the QCD evolution.

First moment of fitted G1 evaluated on the whole X region.

More…

Measurement of the neutron and the proton F2 structure function ratio

The New Muon (NMC) collaboration Allasia, D. ; Amaudruz, P. ; Arneodo, M. ; et al.
Phys.Lett.B 249 (1990) 366-372, 1990.
Inspire Record 298077 DOI 10.17182/hepdata.29644

The ratio of the structure function F 2 n / F 2 p ( x ) has been measured in deep inelastic scattering of 274 GeV muons on hydrogen and deuterium targets exposed simultaneously to the beam. The results were obtained from 0.3 (0.6) million events from hydrogen (deuterium) in the range 0.004 < x < 0.8 and 1 < Q 2 < 190 GeV 2 . At x < 0.25 both the statistical and the systematic error is below 2%. Implications for parton distributions and for the σ w / σ z production cross section ratio in p p collisions are discussed. When compared to other results obtained at lower energies, the data indicate a Q 2 dependence of the ratio.

1 data table

No description provided.


Measurement of the ratio sigma(n) / sigma(p) in inelastic muon - nucleon scattering at very low x and Q**2

The E665 collaboration Adams, M.R. ; Aïd, S. ; Anthony, P.L. ; et al.
Phys.Lett.B 309 (1993) 477-482, 1993.
Inspire Record 354238 DOI 10.17182/hepdata.28907

We present results on the cross-section ratio for inelastic muon scattering on neutrons and protons as a function of Bjorken chi;. The data extend to χ values two orders of magnitude smaller than in previous measurements, down to 2×10 −5 , for Q 2 >0.01 GeV 2 . The ratio is consistent with unity throughout this new range.

2 data tables

No description provided.

No description provided.


Measurements of the Nucleon Structure Functions F(2)N in Deep Inelastic Muon Scattering from Deuterium and Comparison with Those from Hydrogen and Iron

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Nucl.Phys.B 293 (1987) 740-786, 1987.
Inspire Record 245537 DOI 10.17182/hepdata.33529

None

12 data tables

No description provided.

No description provided.

No description provided.

More…

Spin structure of the proton from polarized inclusive deep-inelastic muon proton scattering.

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Rev.D 56 (1997) 5330-5358, 1997.
Inspire Record 440355 DOI 10.17182/hepdata.47485

We have measured the spin-dependent structure function $g_1~p$ in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003 < x < 0.7$ and $1 GeV~2 < Q~2 < 60 GeV~2$. A next-to-leading order QCD analysis is used to evolve the measured $g_1~p(x,Q~2)$ to a fixed $Q~2_0$. The first moment of $g_1~p$ at $Q~2_0 = 10 GeV~2$ is $\Gamma~p = 0.136\pm 0.013(stat.) \pm 0.009(syst.)\pm 0.005(evol.)$. This result is below the prediction of the Ellis-Jaffe sum rule by more than two standard deviations. The singlet axial charge $a_0$ is found to be $0.28 \pm 0.16$. In the Adler-Bardeen factorization scheme, $\Delta g \simeq 2$ is required to bring $\Delta \Sigma$ in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.

11 data tables

Data for Q**2 > 1 GeV**2.

Data for Q**2 > 0.2 GeV**2.

Statistical errors only.

More…

The Gottfried sum from the ratio F2(n) / F2(p)

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Phys.Rev.Lett. 66 (1991) 2712-2715, 1991.
Inspire Record 313931 DOI 10.17182/hepdata.19908

Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004<x<0.8 and 0.4<Q2<190 GeV2, together with the structure function F2d determined from a fit to published data, are used to derive the difference F2p(x)-F2n(x). The value of the Gottfried sum F(F2p-F2n)dx/x=0.240±0.016 is below the quark-parton-model expectation of 1/3.

1 data table

No description provided.


The Present status of the nucleon spin structure functions

The Spin Muon collaboration Horikawa, N. ;
Nucl.Phys.A 577 (1994) 313C-318C, 1994.
Inspire Record 386219 DOI 10.17182/hepdata.36532

SMC is progressing a series of experiments to reveal the spin structure of nucleon at CERN. The first experiment on deuteron has been performed in 1992. We will report here the data on deuteron and discuss the present status of nucleon spin structure using all data including SMC and also E142(SLAC) data recently reported.

1 data table

First moment of the spin-dependent structure function G1.


The ratio F2(n) / F2(p) in deep inelastic muon scattering

The New Muon collaboration Amaudruz, P. ; Arneodo, M. ; Arvidson, A. ; et al.
Nucl.Phys.B 371 (1992) 3-31, 1992.
Inspire Record 321412 DOI 10.17182/hepdata.32955

Results are presented on the ratio of neutron and proton structure functions, F 2 n / F 2 p , deduced from deep inelastic scattering of muon from hydrogen and deuterium. The data, which were obtained at the CERN muon beam at 90 and 280 GeV incident energy, cover the kinematic range x = 0.002−0.80 and Q 2 = 0.1−190 GeV 2 . The measured structure function ratios have small statistical and systematic errors, particularly at small and intermediate x . The observed Q 2 dependence in the range x = 0.1−0.4 is stronger than predicted by perturbative QCD. From the present data together with results from other experiments it is suggested that the twist-four coefficient for the proton is smaller than that for the neutron for x larger than 0.2.

16 data tables

No description provided.

No description provided.

Merged 90 and 280 GeV data.

More…