Inclusive Interactions of High-Energy Neutrinos and anti-neutrinos in Iron

de Groot, J.G.H. ; Hansl, T. ; Holder, M. ; et al.
Z.Phys.C 1 (1979) 143, 1979.
Inspire Record 133261 DOI 10.17182/hepdata.16826

We present results on charged current inclusive neutrino and antineutrino scattering in the neutrino energy range 30–200 GeV. The results include a) total cross-sections; b)y distributions; c) structure functions; and d) scaling violations observed in the structure functions. The results, as well as their comparison with the results of electron and muon inclusive scattering, are in agreement with the expectations of the quark parton model and QCD.

8 data tables

THE VALUES OF Q2 CORRESPONDING TO THE 6 DATA POINTS ARE 1.126,2.11,3.52,4.92,6.33,7.74.

THE VALUES OF Q2 CORRESPONDING TO THE 7 DATA POINTS ARE 1.27,2.25,4.22,7.04,9.85,12.66,15.48.

THE VALUES OF Q2 CORRESPONDING TO THE 8 DATA POINTS ARE 2.11,3.75,7.04,11.72,16.4,21.1,25.8,30.5.

More…

Total Neutrino and Anti-neutrino Charged Current Cross-section Measurements in 100-{GeV}, 160-{GeV} and 200-{GeV} Narrow Band Beams

Berge, J.P. ; Blondel, A. ; Bockmann, P. ; et al.
Z.Phys.C 35 (1987) 443, 1987.
Inspire Record 246156 DOI 10.17182/hepdata.15709

Neutrino and antineutrino total charged current cross sections on iron were measured in the 100, 160, and 200 GeV narrow band beams at the CERN SPS in the energy range 10 to 200 GeV. Assuming σ/E to be constant, the values corrected for non-isoscalarity are σv/E = (0.686 ± 0.019) * 10−38 cm2/ (GeV · nucleon) and σv/E = (0.339 ± 0.010) * 10−38 cm2/ (GeV·nucleon). Between 50 and 150 GeV no energy dependence of σ/E was observed within ±3% for neutrino and ±4% for antineutrino interactions.

5 data tables

Measured charged current total cross section.

Measured charged current total cross section.

No description provided.

More…

Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of the Ratio of Longitudinal and Transverse Structure Functions in Neutrino Interactions Between 30-{GeV} and 200-{GeV}

Abramowicz, H. ; de Groot, J.G.H. ; Knobloch, J. ; et al.
Phys.Lett.B 107 (1981) 141-144, 1981.
Inspire Record 165476 DOI 10.17182/hepdata.31038

A new measurement of the ratio R = σ L / σ T of longitudinal and transverse structure functions in neutrino interactions on iron between 30 and 190 GeV neutrino energy is reported. The result is given as a function of the scale parameter x and the inelasticity ν of the interaction. The average value is R = 0.10 ± 0.07 around ν ≈ 50 GeV and is in accordance with a prediction from the QCD theory.

2 data tables

No description provided.

No description provided.


Neutrino and anti-neutrinos Charged Current Inclusive Scattering in Iron in the Energy Range 20-GeV < Neutrino Energy < 300-GeV

Abramowicz, H. ; de Groot, J.G.H. ; Knobloch, J. ; et al.
Z.Phys.C 17 (1983) 283, 1983.
Inspire Record 182549 DOI 10.17182/hepdata.2213

Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.

50 data tables

ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.

More…