Charge changing cross-sections of the neutron rich isotopes Li-8, Li-9, Li-11

Blank, B. ; Gaimard, J.J. ; Geissel, H. ; et al.
Z.Phys.A 343 (1992) 375-379, 1992.
Inspire Record 333513 DOI 10.17182/hepdata.16579

Total charge-changing cross sections have been measured for8Li on C and Pb targets, for9Li on C, Al, Cu, Sn and Pb targets, as well as for11Li on C, Sn and Pb targets at about 80 MeV/nucleon. These data are compared to measured total reaction cross sections and Glauber-type calculations using Hartree-Fock density distributions. These comparisons allow to draw conclusions on the proton density distribution of the neutronrich lithium isotopes. The results show that even for the most exotic nucleus11Li the proton distribution is only very weakly influenced by the long tail in the neutron density distribution already established in several experiments.

1 data table

No description provided.


Loss of memory of target nucleus deformation axis in heavy ion fusion fission

Hinde, D. J. ; Pan, W. ; Berriman, A. C. ; et al.
Phys.Rev.C 62 (2000) 024615, 2000.
Inspire Record 530771 DOI 10.17182/hepdata.25429

Fission fragment cross sections and angular anisotropies have been measured to high accuracy following fusion of 16O with the strongly deformed nucleus 182W, at bombarding energies spanning the fusion barrier region. Together with existing evaporation residue data, they show that at all the beam energies, the statistical transition state model adequately describes the fission properties measured. No significant evidence was found for a memory of the different configurations at fusion resulting from the target nucleus deformation, in contrast with previous measurements for deformed actinide nuclei.

1 data table

No description provided.


Si-28 (S-32) fragmentation at 3.7-A/GeV, 14.6-A/GeV and 200-A/GeV

The EMU1 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Alexandrov, Y.A. ; et al.
Z.Phys.A 351 (1995) 311-316, 1995.
Inspire Record 407109 DOI 10.17182/hepdata.16506

The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.

6 data tables

JINR.

BNL-815.

CERN-EMU-001.

More…

Fusion enhancement in the 32,38S+Ta-181 reaction

Zyromski, K. E. ; Loveland, W. ; Souliotis, G. A. ; et al.
Phys.Rev.C 63 (2001) 024615, 2001.
Inspire Record 552391 DOI 10.17182/hepdata.25426

We measured the capture-fission excitation functions for the 32S+181Ta reaction and the 38S+181Ta reaction. (The radioactive 38S beam was produced by projectile fragmentation.) In the 32S-induced reaction, an incomplete fusion component was observed at high energies, with an average linear momentum transfer corresponding to the escape of an α particle. The deduced interaction barrier heights were 130.7±0.3 and 124.8±0.3 MeV for the 32S- and 38S-induced reactions, respectively. No differences between the two reactions were observed beyond a simple shift in the interaction barrier height.

2 data tables

A typical beam energy resolution was 0.01 TO 0.1 MeV. In the S32-induced reaction, an incomplete fussion component was observed at high energies, with an average linear momentum transfer corresponding to th e escape of an alpha patticle. The deduced interaction barrier heights were 130 .7+-0.3 and 124.8+-0.3 MeV for the S32 and S38-induced reactions respectively.

A typical beam energy resolution was 0.01 TO 0.1 MeV.