Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

Cherry, M.L. ; Dabrowska, A. ; Deines-Jones, P. ; et al.
Z.Phys.C 63 (1994) 549-556, 1994.
Inspire Record 1385260 DOI 10.17182/hepdata.14108

We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criterion has been found to distinguish between the interactions of these gold nuclei with the light (H,C,N,O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyses of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H,C,N,O) and Au-(Ag,Br) interactions, as well as of the modes of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Si-28 (S-32) fragmentation at 3.7-A/GeV, 14.6-A/GeV and 200-A/GeV

The EMU1 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Alexandrov, Y.A. ; et al.
Z.Phys.A 351 (1995) 311-316, 1995.
Inspire Record 407109 DOI 10.17182/hepdata.16506

The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.

6 data tables

JINR.

BNL-815.

CERN-EMU-001.

More…