Intranuclear cascading at ultrahigh-energy in heavy ion interactions

Jain, P.L. ; Singh, G. ; Sengupta, K. ;
Z.Phys.C 52 (1991) 465-470, 1991.
Inspire Record 316804 DOI 10.17182/hepdata.14775

Intranuclear cascading mechanism one of the important non-linear effects in high energy nucleusnucleus collisions is investigated. The data on multiplicity (ns) and pseudorapidity (η) distributions of shower particles produced by32S and16O at 200A GeV,16O at 60A GeV,28Si at 14.5A GeV and He at ≈140A GeV are presented and compared with the string model VENUS, which takes into account the cascade interactions of secondary particles. The effect of the intranuclear collisions on the distributions of <η> versus <ns> is discussed for all the beams.

2 data tables

No description provided.

No description provided.


Total reaction and neutron removal cross-sections of (30-60)A MeV He and Li isotopes on Pb

Warner, R. E. ; McKinnon, M. H. ; Shaner, N. C. ; et al.
Phys.Rev.C 62 (2000) 024608, 2000.
Inspire Record 530690 DOI 10.17182/hepdata.25484

Total reaction cross sections σR of (30–60)AMeV 4,6,8He and 6,7,8,9,11Li on Pb, and 2n-removal cross sections σ−2n of 6,8He and 11Li on Pb, were measured by injecting magnetically separated, focused, monoenergetic, secondary beams of those projectiles into a telescope containing Pb targets separated by thin Si detectors. All these σR’s (except 4He), and σ−2n for 6He and 11Li, are underpredicted by microscopic model calculations which include only nuclear forces. Better agreement is achieved by including electromagnetic dissociation in the model, for those projectiles for which either the electric dipole response functions or the dominant photodissociation cross sections were known. The cross sections σ−4n for 8He, σ−xn for 7,8,9Li, and (σ−3n+σ−4n) for 11Li were found to be ⩽0.7 b. All σR’s were measured to better than 5% accuracy, showing that the method is usable for other target elements sandwiched into a Si telescope.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Neutron skin of Na isotopes studied via the interaction cross-sections

Suzuki, T. ; Geissel, H. ; Bochkarev, O. ; et al.
Phys.Rev.Lett. 75 (1995) 3241-3244, 1995.
Inspire Record 400762 DOI 10.17182/hepdata.19608

The interaction cross sections (σI) of ANa isotopes (A=20–23,25–32) on a carbon target have been measured at 950AMeV. The effective root-mean-square matter radii of these isotopes were deduced from σI by a Glauber-type calculation. By combining the isotope-shift data with the present data the radii of neutrons have been compared with those of protons for the first time along a chain of stable and unstable isotopes. A monotonic increase in the neutron skin thickness has been observed as the neutron number increases in Na isotopes.

1 data table

ERRORS INCLUDE BOTH STATISTICAL AND SYSTEMATIC ERRORS.


Target associated particle production in ultrarelativistic nucleus-nucleus collisions

Sengupta, K. ; Jain, P.L. ; Singh, G. ;
Mod.Phys.Lett.A 6 (1991) 29-39, 1991.
Inspire Record 316958 DOI 10.17182/hepdata.37873

We report the multiplicity and angular distributions of the low energy target-associated particles from 32S and 16O induced reactions at 200 GeV/nucleon and 16O induced reactions at 60 GeV/nucleon in emulsion. The results are compared with the Monte-Carlo Code VENUS.

3 data tables

No description provided.

No description provided.

THE FORWARD AND BACKWARD HEMISPHERE ARE DEFINED AS MULT(Q=FORWARD) WHEN COS(THETA) > 0 AND MULT(Q=BACKWARD) WHEN COS(THETA) < 0.


Comparison of nucleus-nucleus interactions at 14.5-A/GeV - 200-A/GeV with the multistring model VENUS

Jain, P.L. ; Singh, G. ; Sengupta, K. ;
Phys.Rev.C 43 (1991) 2027-2030, 1991.
Inspire Record 314429 DOI 10.17182/hepdata.26179

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

On the production of fast and slow particles in nucleus-nucleus collisions at ultrarelativistic energies

Jain, P.L. ; Sengupta, K. ; Singh, G. ;
Phys.Rev.C 44 (1991) 844-853, 1991.
Inspire Record 315632 DOI 10.17182/hepdata.26111

Multiplicity and angular distributions of shower, grey, and black particles produced in the interactions of S32 at 200A GeV, O16 at 200 and 60A GeV, and He4 at ∼140A GeV in emulsion are compared with the predictions of a Monte Carlo code which takes into account the internuclear cascading. The correlations between the various parameters belonging to the same or to the different kinds of particles are discussed. The data on shower and grey particles from all the beams are well described by the code. However, the black prong data show a significant departure from this model.

6 data tables

No description provided.

No description provided.

No description provided.

More…

On the Production of Helium Fragments in Ultrarelativistic Heavy Ion Collisions

Sengupta, K. ; Singh, G. ; Jain, P.L. ;
Phys.Lett.B 222 (1989) 301-305, 1989.
Inspire Record 25611 DOI 10.17182/hepdata.29805

Partial production cross sections of projectile alpha fragments produced in high-energy interactions of 16 O and 32 S at 200 GeV/n and 16 O at 60 GeV/n in emulsion are studied. Evidence of multiplicity scaling of such produced fragments is presented in the energy range 2–200 GeV/n for various projectiles.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Limiting Fragmentation in Oxygen Induced Emulsion Interactions at 14.6-a/{GeV}, 60-a/{GeV} and 200-a/{GeV}

The EMU01 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Arora, R. ; et al.
Phys.Rev.Lett. 62 (1989) 2801, 1989.
Inspire Record 268021 DOI 10.17182/hepdata.20041

Pseudorapidity distributions of relativistic singly charged particles in oxygen-induced emulsion interactions at 14.6, 60, and 200 GeV/nucleon are studied. Limiting fragmentation behavior is observed in both the target and projectile fragmentation regions for a central as well as for a minimum-bias sample. Comparisons with the fritiof model reveal that the picture of fragmenting strings successfully describes the observed data.

2 data tables

NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.

NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.