Production of pi+-, K+-, p, and anti-p in relativistic Au + Pt, Si + Pt, and p + Pt collisions

The E886 collaboration Diebold, G.E. ; Bassalleck, B. ; Burger, T. ; et al.
Phys.Rev.C 48 (1993) 2984-2994, 1993.
Inspire Record 364483 DOI 10.17182/hepdata.26015

During the recent commissioning of Au beams at the Brookhaven Alternating Gradient Synchrotron facility, experiment 886 measured production cross sections for π±, K±, p, and p¯ in minimum bias Au+Pt collisions at 11.5A GeV/c. Invariant differential cross sections, Ed3σ/dp3, were measured at several rigidities (p/Z≤1.8 GeV/c) using a 5.7° (fixed-angle) focusing spectrometer. For comparison, particle production was measured in minimum bias Si+Pt collisions at 14.6A GeV/c using the same apparatus and in p+Pt collisions at 12.9 GeV/c using a similar spectrometer at KEK. When normalized to projectile mass, Aproj, the measured π± and K± cross sections are nearly equal for the p+Pt and Si+Pt reactions. In contrast to this behavior, the π− cross section measured in Au+Pt shows a significant excess beyond Aproj scaling of the p+Pt measurement. This enhancement suggests collective phenomena contribute significantly to π− production in the larger Au+Pt colliding system. For the Au+Pt reaction, the π+ and K+ yields also exceed Aproj scaling of p+Pt collisions. However, little significance can be attributed to these excesses due to larger experimental uncertainties for the positive rigidity Au beam measurements. For antiprotons, the Si+Pt and Au+Pt cross sections fall well below Aproj scaling of the p+Pt yields indicating a substantial fraction of the nuclear projectile is ineffective for p¯ production. Comparing with p+Pt multiplicities, the Si+Pt and Au+Pt antiproton yields agree with that expected solely from ‘‘first’’ nucleon-nucleon collisions (i.e., collisions between previously unstruck nucleons). In light of expected p¯ annihilation in the colliding system, such projectile independence is unexpected without additional (projectile dependent) sources of p¯ production. In this case, the data indicate an approximate balance exists between absorption and additional sources of antiprotons. This balance is remarkable given the wide range of projectile mass spanned by these measurements.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of K mesons in collisions of relativistic carbon nuclei with led and copper nuclei

Gavrilov, O.K. ;
MINR-P-0359, 1984.
Inspire Record 1501546 DOI 10.17182/hepdata.76485

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Excitation function of K+ and pi+ production in Au + Au reactions at 2-A-GeV to 10-A-GeV.

The E866 & E917 collaborations Ahle, L. ; Akiba, Y. ; Ashktorab, K. ; et al.
Phys.Lett.B 476 (2000) 1-8, 2000.
Inspire Record 508374 DOI 10.17182/hepdata.28038

Positive pion and kaon production from Au+Au reactions have been measured as a function of beam energy over the range 2.0-10.7~AGeV. Both the kaon and the pion production cross-sections at mid-rapidity are observed to increase steadily with beam kinetic energy. The ratio of K$^+$ to $\pi^+$ mid-rapidity yields increases from 0.0271$\pm0.0015\pm0.0014$ at 2.0~AGeV to 0.202$\pm0.005\pm0.010$ at 10.7~AGeV and is larger than the K$^+$/$\pi^+$ ratio from p+p reactions over the same beam energy region. There is no indication of an onset of any new production mechanism in heavy-ion reactions in this energy range beyond rescattering of hadrons.

4 data tables

The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). A single exponential function in MT was fit simultaneously to the two kaonspectra at each beam energy D2(N)/D(MT)/D(YRAP)/2/PI/MT=D(N)/D(YRAP)/2/PI/T/(T+ M(KAON))/EXP((MT-M(KAON))/T). The fits reproduce the spectra well with two free parameters, the inverse slope parameter T and the rapidity density, D(N)/D(YRAP)in that rapidity slice. The mid-rapidity range for 2, 4, 6, 8 AGeV is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV the width is ABS((YRAP-Ynn)/Ynn) < 0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only. The 1.96, 4. and 10.74 GeV are E866 data, another - E917 data.

The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). A single exponential function in MT was fit simultaneously to the two kaonspectra at each beam energy D2(N)/D(MT)/D(YRAP)/2/PI/MT=D(N)/D(YRAP)/2/PI/T/(T+ M(KAON))/EXP((MT-M(KAON))/T). The fits reproduce the spectra well with two free parameters, the inverse slope parameter T and the rapidity density, D(N)/D(YRAP)in that rapidity slice. The mid-rapidity range for 2, 4, 6, 8 AGeV is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV the width is ABS((YRAP-Ynn)/Ynn) < 0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only. The 1.96, 4. and 10.74 GeV are E866 data, another - E917 data.

The centrality selection at each beam energy is the most central 5% of the total interaction cross-section (SIG(C=interaction) = 6.8b). The spectra were fit with a scaled exponential, D2(N)/D(YRAP)/D(MT)/2/PI/MT=D(N)/D(YRAP)/2/PI/(T**(2-L))/GAMMA(2-L,M(PION)/T)/MT**L/EXP(MT/T), where GAMMA(2-L,M(PION)/T), the complementary incomplete gamma function, is introduced in the normalization so that D(N)/D(YRAP) is a fitted parameter (and other free parameters are L and T). The mid-rapidity range for 2, 4 (E866 data), 6, 8 AGeV (E917 data) beam energy is ABS((YRAP-Ynn)/Ynn) < 0.25, for 10.7 AGeV (E917 data) the width is ABS((YRAP-Ynn)/Ynn) <0.125, where Ynn is mid-rapidity in the laboratory frame. The errors are statistical only.

More…

Analysis of Behavior of $\pi^-$ Mesons and Protons Produced in Nucleus-nucleus Interactions at 4.2-{GeV}/$c$ Per Nucleon Depending on the Number of Interacting Protons

Agakishiev, G.N. ; Backovic, S. ; Boldea, V. ; et al.
Sov.J.Nucl.Phys. 45 (1987) 852, 1987.
Inspire Record 235264 DOI 10.17182/hepdata.9548

None

22 data tables

FRAGT IS CHARGE BARYON WITH PATH < 4 CM.

FRAGT IS CHARGE BARYON WITH PATH < 4 CM.

FRAGT IS CHARGE BARYON WITH PATH < 4 CM.

More…

Charged pion production in 2-AGeV to 8-AGeV central Au + Au collisions.

The E-0895 collaboration Klay, J.L. ; Ajitanand, N.N. ; Alexander, J.M. ; et al.
Phys.Rev.C 68 (2003) 054905, 2003.
Inspire Record 622260 DOI 10.17182/hepdata.4989

Momentum spectra of charged pions over nearly full rapidity coverage from target to beam rapidity have been measured in the 0-5% most central Au+Au collisions in the beam energy range from 2 to 8 AGeV by the E895 Experiment. Using a thermal parameterization to fit the transverse mass spectra, rapidity density distributions are extracted. The observed spectra are compared with predictions from the RQMD v2.3 cascade model and also to a thermal model including longitudinal flow. The total 4$\pi$ yields of the charged pions are used to infer an initial state entropy produced in the collisions.

98 data tables

No description provided.

No description provided.

No description provided.

More…

Observation of enhanced subthreshold K+ production in central collisions between heavy nuclei

Miskowiec, D. ; Ahner, W. ; Barth, R. ; et al.
Phys.Rev.Lett. 72 (1994) 3650-3653, 1994.
Inspire Record 373335 DOI 10.17182/hepdata.19695

In the very heavy collision system Au197+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/π+ ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (ΔN→KΛN and ΔΔ→KΛN) are ignored.

2 data tables

No description provided.

The total K+ cross section is determined by extrapolating and integrating the double differential cross section d2(sig)/d(p)/d(omega) over momentum and solid angle.


Centrality dependence of pi+-, K+-, p and anti-p production from s(NN)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 242301, 2002.
Inspire Record 568437 DOI 10.17182/hepdata.19421

Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. The multiplicity densities scale faster than the number of participating nucleons. Kaon and nucleon yields per participant increase faster than the pion yields. In central collisions at high transverse momenta (p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the pion yields.

21 data tables

Transverse momentum spectra for PI+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

Transverse momentum spectra for PI- in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

Transverse momentum spectra for K+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

More…

Pion and proton production in proton tungsten and sulphur tungsten interactions at 200-GeV/c per nucleon

The WA85 collaboration Antinori, F. ; Barnes, R.P. ; Bayes, A.C. ; et al.
Phys.Lett.B 412 (1997) 407-413, 1997.
Inspire Record 459722 DOI 10.17182/hepdata.28265

Production of charged particles identified by a multi cell threshold Čerenkov counter in proton-tungsten and central sulphur-tungsten collisions at 200 GeV/ c per nucleon is discussed. The π ± , p and p production ratios and transverse mass spectra at central rapidity and p T > 0.6 GeV/ c are presented and compared with results from other experiments at the same beam energy.

4 data tables

No description provided.

No description provided.

The slope evaluated from the D(N)/D(MT)/(MT**1.5) distribution (denoted as D(N)/D(MT)).

More…

Charged particle production in S S collisions at 200-GeV/c per nucleon

The WA94 collaboration Andrighetto, A. ; Antinori, F. ; Bayes, A.C. ; et al.
Phys.Lett.B 412 (1997) 148-154, 1997.
Inspire Record 460283 DOI 10.17182/hepdata.28242

Charged particle production in central S-S collisions at 200 GeV/ c per nucleon has been studied by the WA94 experiment at the CERN-SPS. Particle identification has been provided by the Omega RICH, while a silicon telescope in the Omega spectrometer and an array of MultiWire Proportional Chambers have been used to trace particles through the RICH detector. Production ratios and transverse mass spectra for π ± , K ± and p( p ) at central rapidity and p T > 1.3 GeV/ c are presented.

3 data tables

Distributions are fitted with (1/MT**1.5)*DSIG/DMT = CONST*EXP(-MT/SLOPE).

1.54 GeV ratio is calculated from the fit to the MT distribution.

1.54 GeV ratio is calculated from the fit to the MT distribution.


Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement

The NA49 collaboration Alt, C. ; Anticic, T. ; Baatar, B. ; et al.
Phys.Rev.C 77 (2008) 024903, 2008.
Inspire Record 762554 DOI 10.17182/hepdata.25169

Results on charged pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV are presented and compared to data at lower and higher energies. A rapid change of the energy dependence is observed around 30A GeV for the yields of pions and kaons as well as for the shape of the transverse mass spectra. The change is compatible with the prediction that the threshold for production of a state of deconfined matter at the early stage of the collisions is located at low SPS energies.

13 data tables

Transverse mass spectra for pion production in the central rapidity region for collisions at 20 GeV per nucleon.

Transverse mass spectra for pion production in the central rapidity region for collisions at 30 GeV per nucleon.

Transverse mass spectra for kaon production in the central rapidity region for collisions at 20 GeV per nucleon.

More…