Determination of the cross-sections for the production of fragments from relativistic nucleus-nucleus interactions. 2: Parametric fits

Cummings, J.R. ; Waddington, C.Jake ; Binns, W.R. ; et al.
Phys.Rev.C 42 (1990) 2530-2545, 1990.
Inspire Record 307321 DOI 10.17182/hepdata.5444

Measurements of the partial charge-changing cross sections for the fragmentation of relativistic iron, lanthanum, holmium, and gold nuclei of several different energies incident on targets of polyethylene, carbon, aluminum, and copper have been reported in an accompanying paper. This paper describes the systematics of the variations of these cross sections with energy, projectile, target, and fragment. We have been able to generate a seven-parameter global fit to 795 measured cross sections for the heavy targets which fits the data with a standard deviation of 7%. We have also generated a similar global fit to 303 measured cross sections for a hydrogen target which fits the data with a standard deviation of 10%. These representations imply that the hypothesis of limiting fragmentation is only accurate to some 20–30 %. Weak factorization can apply, but fits that are marginally better, and more physically plausible, can be obtained without factorization. We have identified, and discussed, a number of caveats to the applicability of these fits outside, and inside, the range of energies and masses covered. Excessively large cross sections for the loss of a single proton from the projectile nuclei suggest electromagnetic dissociation. The cross sections for fragments that experience large charge changes appear to become independent of the size of the charge change. Very heavy projectiles have a significant probability of experiencing fission.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Charge changing fragmentation of 10.6-GeV/nucleon Au-197 nuclei

The UHIC collaboration Geer, L.Y. ; Klarmann, J. ; Nilsen, B.S. ; et al.
Phys.Rev.C 52 (1995) 334-345, 1995.
Inspire Record 406577 DOI 10.17182/hepdata.25870

We have measured the charge-changing cross sections of 10.6 GeV/nucleon Au197 nuclei interacting in targets of CH2 (polyethylene), C, Al, Cu, Sn, and Pb. Cross sections for H are calculated from those measured in C and CH2. The total charge-changing cross sections are higher than those measured at energies of ≤1 GeV/nucleon. The measured cross sections for the heavier targets are somewhat larger than those predicted by a model based on data taken at lower energies with lighter targets. Partial charge-changing cross sections for the production of fragments from the incident Au projectiles were measured for charge changes (ΔZ) from ΔZ=+1,80Hg, down to approximately ΔZ=-29,50Sn. In comparison to lower energy measurements, these partial cross sections are found to be smaller for small ΔZ and larger or the same for large ΔZ. The H partial cross sections are found to follow a power law in ΔZ similar to that for heavier targets, instead of the exponential form observed at lower energies. Factorization is found to hold for all partial cross sections with ΔZ greater than two. In the heavier targets, the cross sections for one and two proton removal have significant contributions from electromagnetic dissociation. The electromagnetic dissociation contribution to the total cross section is derived and found to be relatively small, but with a strong dependence on the charge of the target nuclei of the form ZT1.75±0.01.

2 data tables

TARGET NUCLEUS=CH2(POLYETHYLENE).

TARGET NUCLEUS=CH2(POLYETHYLENE).


Determination of the cross-sections for the production of fragments from relativistic nucleus-nucleus interactions. 1: Measurements

Cummings, J.R. ; Waddington, C.Jake ; Binns, W.R. ; et al.
Phys.Rev.C 42 (1990) 2508-2529, 1990.
Inspire Record 307293 DOI 10.17182/hepdata.5443

Relativistic iron, lanthanum, holmium, and gold projectile nuclei with several different energies have been fragmented in targets of polyethylene, carbon, aluminum, copper, and lead. Our detectors cleanly resolve the individual charges of the heaviest of these fragments and provide some limited information on the masses. We have measured 1256 elemental partial cross sections for the production of fragments from interactions in these target materials. Values have been derived for another 417 cross sections in a hydrogen medium. These cross sections depend on the energy and mass of the projectile nuclei as well as on the nature of the target. Total charge-changing cross sections were also found, but only in a composite target, and have been shown to be weakly dependent on energy. The mean mass losses observed for fragments that have lost a few protons show that typically many neutrons are lost with each proton, producing fragment nuclei that must be highly proton rich, and consequently very unstable. The cross sections for charge pickup on heavy targets show a rapid increase with decreasing energy, particularly for the heaviest targets. The systematics of the dependencies of the partial cross sections will be discussed in a companion paper.

11 data tables

TARGET NUCLEUS=CH2.

No description provided.

No description provided.

More…