Measurement of the $\nu_\mu$ CCQE cross section on carbon with the ND280 detector at T2K

The T2K collaboration Abe, K. ; Adam, J. ; Aihara, H. ; et al.
Phys.Rev.D 92 (2015) 112003, 2015.
Inspire Record 1329784 DOI 10.17182/hepdata.72875

The Charged-Current Quasi-Elastic (CCQE) interaction, $\nu_{l} + n \rightarrow l^{-} + p$, is the dominant CC process at $E_\nu \sim 1$ GeV and contributes to the signal in accelerator-based long-baseline neutrino oscillation experiments operating at intermediate neutrino energies. This paper reports a measurement by the T2K experiment of the $\nu_{\mu}$ CCQE cross section on a carbon target with the off-axis detector based on the observed distribution of muon momentum ($p_\mu$) and angle with respect to the incident neutrino beam ($\theta_\mu$). The flux-integrated CCQE cross section was measured to be $(0.83 \pm 0.12) \times 10^{-38}\textrm{ cm}^{2}$ in good agreement with NEUT MC value of ${0.88 \times 10^{-38}} \textrm{ cm}^{2}$. The energy dependence of the CCQE cross section is also reported. The axial mass, $M_A^{QE}$, of the dipole axial form factor was extracted assuming the Smith-Moniz CCQE model with a relativistic Fermi gas nuclear model. Using the absolute (shape-only) $p_{\mu}cos\theta_\mu$ distribution, the effective $M_A^{QE}$ parameter was measured to be ${1.26^{+0.21}_{-0.18} \textrm{ GeV}/c^{2}}$ (${1.43^{+0.28}_{-0.22} \textrm{ GeV}/c^{2}}$).

2 data tables

The measured CCQE energy-dependent cross section per target neutron.

The fractional covariance matrix corresponding to the errors shown in Figure 7.