Precise measurement of neutrino and anti-neutrino differential cross sections.

The NuTeV collaboration Tzanov, M. ; Naples, D. ; Boyd, S. ; et al.
Phys.Rev.D 74 (2006) 012008, 2006.
Inspire Record 691719 DOI 10.17182/hepdata.11120

The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

159 data tables

Measurement of F2 at X = 0.015.

Measurement of F2 at X = 0.045.

Measurement of F2 at X = 0.080.

More…

A Next-to-leading order QCD analysis of neutrino - iron structure functions at the Tevatron

Seligman, William Glenn ; Shaevitz, Michael ;
FERMILAB-THESIS-1997-21, 1997.
Inspire Record 441652 DOI 10.17182/hepdata.37291

Nucleon structure functions measured in neutrino-iron and antineutrinoiron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 Ge V. The structure functions $F_2$ and $xF_3$ are compared with the the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives NL0(4) . 2 value of $\Lambda^{NLO,(4)}_{\overline MS}$ = 337 ± 28 (exp.) MeV, which corresponds to $\alpha_s$ ($M^2_z$) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by $xG(x,Q^2_0 = 5 GeV^2$ ) = (2.22±0.34) x ($1-x)^{4.65 \pm 0.68}$

3 data tables

The cross sections are normalized to the world average of SIG(NUMU)/E/A = 0.677E-38 cm^2/GeV as no absolute flux measurement was made in this experiment.

These cross sections are normalized to the world average of SIG(NUMU)/E/A =0.677E-38 cm^2/GeV multiplied by the world average of SIG(NUMUBAR)/SIG(NUMU) i n c l u d i n g this experiment.

No description provided.


Normalized Small Y Cross-Sections for Neutrinos and anti-neutrinos at High-Energy

Barish, B.C. ; Bartlett, J.F. ; Bodek, A ; et al.
Phys.Rev.Lett. 39 (1977) 741, 1977.
Inspire Record 5717 DOI 10.17182/hepdata.50114

We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.

2 data tables

FE nucleus. The SIG/Enu is fitted to CONST(N=SIG)+CONST(N=T)*E.

FE nucleus. Averaged over the energies and beams.


A Measurement of $\Lambda_{\overline{MS}}$ from $\nu_{\mu}$ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron

Quintas, P.Z. ; Leung, W.C. ; Mishra, S.R. ; et al.
Phys.Rev.Lett. 71 (1993) 1307-1310, 1993.
Inspire Record 336860 DOI 10.17182/hepdata.19733

The CCFR Collaboration presents a measurement of scaling violations of the nonsinglet structure function and a comparison to the predictions of perturbative QCD. The value of ΛQCD, from the nonsinglet evolution with Q2>15 GeV2 and in the modified minimal-subtraction renormalization scheme, is found to be 210±28(stat)±41(syst) MeV.

1 data table

The CONST(N=LAMBDA-QCD) is extracted from the measurement of scaling violations of the nonsinglet structure function.


Nucleon structure functions from high energy neutrino interactions

Oltman, E. ; Auchincloss, Priscilla S. ; Blair, R.E. ; et al.
Z.Phys.C 53 (1992) 51-71, 1992.
Inspire Record 335706 DOI 10.17182/hepdata.1433

Structure functions obtained from high energy neutrino and antineutrino scattering from an iron target are presented. These were extracted from the combined data of Fermilab experiments E616 and E701; these utilized narrow band beam runs between 1979–1982. The structure functions are used to test the validity of quarkparton model (QPM) predictions and to extract the QCD scale parameter Λ from fits to the Altarelli-Parisi equations.

22 data tables

No description provided.

No description provided.

No description provided.

More…

Neutrino production of same sign dimuons at the Fermilab Tevatron

Sandler, P.H. ; Kinnel, T.S. ; Smith, W.H. ; et al.
Z.Phys.C 57 (1993) 1-12, 1993.
Inspire Record 32390 DOI 10.17182/hepdata.14493

The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μ−μ− events and 25 μ+μ+ events withPμ>9 GeV/c, produced in 1.5 millionvμ and 0.3 million\(\overline {v_\mu}\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 pervμ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu}\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc\(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 pervμ charged-current event. In this case,c\(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.

2 data tables

Rate of dimuon production per charged current event.

Rate of dimuon production per charged current event.


Electroweak Parameters From a High Statistics Neutrino Nucleon Scattering Experiment

Blondel, A. ; Bockmann, P. ; Burkhardt, .H. ; et al.
Z.Phys.C 45 (1990) 361-379, 1990.
Inspire Record 287166 DOI 10.17182/hepdata.15282

The final results from the WA 1/2 neutrino experiment in the 1984 CERN 160 GeV narrow band beam are presented. The ratiosRν and\(R_{\bar v} \) of neutral to charged current interaction rates of neutrinos and antineutrinos in iron are measured to beRν=0.3072±0.0033 and\(R_{\bar v} \)=0.382±0.016. A value of the electroweak parameter sin2 θw = 1 −mW2/mZ2 is extracted fromRν. The result is sin2 θw =0.228+0.013(mc−1.5)±0.0003 (theor.) wheremc is the mass of the charmed quark in GeV formt=60 GeV,MH=100 GeV, ρ=1. CombiningRν and\(R_{\bar v} \) one obtains a value for ρ=0.991+0.023(mc−1.5)±0.020(exp.). Alternatively,Rν and\(R_{\bar v} \) yield a precise value of the ratio of intermediate vector boson massesmW/mZ=0.880−0.007(mc−1.5)±0.002(exp.)±0.002(theor.). Comparison of these results with those from direct measurements of the vector boson masses are presented. In a model-independent analysis the left- and right-handed neutral current coupling constants,gL2 andgR2, are determined.

3 data tables

No description provided.

No description provided.

No description provided.


NEUTRAL CURRENT COUPLING IN HIGH-ENERGY NEUTRINO INTERACTIONS.

Merritt, F.S. ; Barish, B.C. ; Bartlett, J.F. ; et al.
Phys.Rev.D 17 (1978) 2199-2205, 1978.
Inspire Record 132560 DOI 10.17182/hepdata.24431

We present measured hadron energy distributions for the reactions ν(ν¯)+N→ν(ν¯)+hadrons at high energy, as well as for the similar charged-current interactions. Insofar as possible, the determination of these distributions avoids any a priori assumptions about either the neutral-current or the charged-current interactions. We further analyze the neutral-current distributions within the framework of specific models, particularly the scaling model, to obtain a positive-helicity component P=0.36±0.10, which lies between pure V−A and pure V or A, and a coupling strength of g0=0.31±0.03 relative to the charged-current interaction. These coupling parameters agree well with the predictions of the Weinberg-Salam model with sin2θW=0.33±0.07.

2 data tables

No description provided.

No description provided.


Neutrino Production of Opposite Sign Dimuons at Tevatron Energies

Foudas, C. ; Bachmann, K.T. ; Bernstein, R.H. ; et al.
Phys.Rev.Lett. 64 (1990) 1207, 1990.
Inspire Record 26417 DOI 10.17182/hepdata.20000

We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE

2 data tables

No description provided.

No description provided.


Experimental Study of Neutral Current and Charged Current Neutrino Cross-Sections

The CHARM collaboration Jonker, M. ; Panman, J. ; Udo, F. ; et al.
Phys.Lett.B 99 (1981) 265, 1981.
Inspire Record 156267 DOI 10.17182/hepdata.27136

Samples of 9200 muon-neutrino and 3800 muon-antineutrino interactions on nuclei were obtained with the fine-grain calorimeter of the CHARM Collaboration at the CERN 200 GeV narrow-band neutrino beam. The interactions were classified as either neutral-current or charged-current processes on an event-by-event basis. Neutral-current and charged-current cross sections in neutrino and antineutrino interactions are presented. From these results we deduce a statistically significant contribution of right-handed coupling to the neutral hadronic current, and a value of the electroweak mixing angle corresponding to sin 2 θ = 0.220 ± 0.014.

4 data tables

Measured charged current total cross section.

Measured charged current total cross section.

No description provided.

More…

Measurement of the neutral to charged current cross section ratio in neutrino and antineutrino interactions.

Holder, M. ; Knobloch, J. ; May, J. ; et al.
Phys.Lett.B 71 (1977) 222, 1977.
Inspire Record 120776 DOI 10.17182/hepdata.27510

We report on the analysis of inclusive neutral current events produced in neutrino and antineutrino narrow band beams. We find for incident neutrino energies in the range 12–200 GeV and for hadron energies above 12 GeV a neutral to charged current cross-section ratio of R v = 0.293 ± 0.010 for incident neutrinos, and R v = 0.35 ± 0.03 for antineutrinos. These ratios are consistent with the Weinberg-Salam model, with sin 2 θ w = 0.24 ± 0.02.

2 data tables

No description provided.

No description provided.


Measurement of the Neutral Current Interactions of High-Energy Neutrinos and anti-neutrinos

Wanderer, P. ; Benvenuti, A. ; Cline, D. ; et al.
Phys.Rev.D 17 (1978) 1679, 1978.
Inspire Record 120154 DOI 10.17182/hepdata.24428

Measurements of the ν and ν¯ weak hadronic neutral-current total cross sections and hadron energy distributions are consistent with a V−A form for this current. They are three standard deviations from pure V, pure A, or a pure T form and unambiguously exclude V+A and any linear combination of S and P.

2 data tables

DATA FOR VARIOUS BEAM FOCUSING.

No description provided.


Determination of the Neutral to Charged Current Inclusive Cross-Section Ratio for Neutrino and anti-neutrino Interactions in the Gargamelle Experiment

The Gargamelle Neutrino collaboration Blietschau, J. ; Deden, H. ; Hasert, F.J. ; et al.
Nucl.Phys.B 118 (1977) 218-236, 1977.
Inspire Record 110123 DOI 10.17182/hepdata.35596

None

2 data tables

No description provided.

No description provided.


Experimental Study of X Distributions in Semileptonic Neutral Current Neutrino and Anti-neutrino Reactions

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Phys.Lett.B 213 (1988) 554-561, 1988.
Inspire Record 264997 DOI 10.17182/hepdata.29877

Using the CHARM detector 36 000 deep inelastic neutral-current reactions of neutrinos (and 2000 of antineutrinos) from the 160 GeV narrow-band beam were recorded. The differential cross section d σ d x in the Bjorken scaling variable x was computed by unfolding the effects of limited acceptance and of resolution of the detector as well as the ambiguity of the energy of the incoming neutrinos (produced by π- or K-decay). Combining the results from the neutrino and antineutrino data, the structure functions F 2 and xF 3 and the antiquark momentum distribution measured via the NC coupling were determined. The distributions are in agreement with the corresponding CC distibutions. Comparisons with deep inelastic muon scattering confirm the universality of nuclear structure functions as probed by the weak and the electromagnetic currents.

1 data table

SEE THE PAPER FOR THE PRECISE DEFNS OF F(+), F(-).


Total Cross-sections of Charged Current Neutrino and Anti-neutrino Interactions on Isoscalar Nuclei

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Z.Phys.C 38 (1988) 403-410, 1988.
Inspire Record 252954 DOI 10.17182/hepdata.15652

New measurements of the total crosssections of charged-current interactions of muonneutrinos and antineutrinos on isoscalar nuclei have been performed. Data were recorded in an exposure of the CHARM d

2 data tables

No description provided.

No description provided.


Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Properties of Multiplicity Distributions in $\nu A$ and $\bar{\nu}A$ Interactions at $E_{\nu/\bar{\nu}}\le 30$-{GeV}

Baranov, D.S. ; Chabrov, N.A. ; Filippov, V.A. ; et al.
Z.Phys.C 21 (1984) 189, 1984.
Inspire Record 197246 DOI 10.17182/hepdata.16364

We present data on the multiplicity structure of inclusive charged hadron production in charged current neutrino and antineutrino freon interactions in the energy range 3–30 GeV resulting from an experiment with the bubble chamber SKAT. Average multiplicities, dispersions and correlation coefficients are investigated. Furthermore, KNO-scaling is studied and average net charges are calculated in different kinematical regions. Our data are compared with results from\(\begin{array}{*{20}c}{( - )}\\v\\ \end{array} \)-interactions on an isoscalar target of “free” nucleons to study the influence of nuclear effects.

9 data tables

No description provided.

No description provided.

THE DATA ARE SATISFACTORILY DESCRIBED BY A LINEAR FUNCTION IN LN(W**2): <N> = A + B * LN(W**2) A=0.15+-0.09, B=0.84+-0.05 FOR CHARGED+ AND A=-0.49+-0.06, B=0.63+-0.04 FOR CHARGED-.

More…

Observation of Emc Effect in Anti-neutrino Ne Interactions

Ammosov, V.V. ; Gapienko, V.A. ; Gapienko, G.S. ; et al.
JETP Lett. 39 (1984) 393, 1984.
Inspire Record 206826 DOI 10.17182/hepdata.16937

None

1 data table

No description provided.


THE RATIO OF THE X DISTRIBUTIONS FOR ANTI-NEUTRINOS INTERACTIONS IN NEON AND DEUTERIUM

Asratian, A.E. ; Efremenko, V.I. ; Fedotov, A.V. ; et al.
ITEP-110-1983, 1983.
Inspire Record 192049 DOI 10.17182/hepdata.40367

None

2 data tables

No description provided.

No description provided.