Forward production of charged pions with incident protons on nuclear targets at the CERN PS

The HARP collaboration Apollonio, M. ; Artamonov, A. ; Bagulya, A. ; et al.
Phys.Rev.C 80 (2009) 035208, 2009.
Inspire Record 826544 DOI 10.17182/hepdata.53810

Measurements of the double-differential charged pion production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.025 rad < theta <0.25 rad in collisions of protons on beryllium, carbon, nitrogen, oxygen, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles were identified by an elaborate system of beam detectors. The data were taken with thin targets of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward system of the HARP experiment. Results are obtained for the double-differential cross section mainly at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with the GEANT4 and MARS Monte Carlo generators. A global parametrization is provided as an approximation of all the collected datasets which can serve as a tool for quick yields estimates.

91 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of particle production in proton induced reactions at 14.6-GeV/c

The E-802 collaboration Abbott, T. ; Akiba, Y. ; Beavis, D. ; et al.
Phys.Rev.D 45 (1992) 3906-3920, 1992.
Inspire Record 323473 DOI 10.17182/hepdata.3830

Particle production in proton-induced reactions at 14.6 GeV/c on Be, Al, Cu, and Au targets has been systematically studied using the E-802 spectrometer at the BNL-Alternating Gradient Synchrotron. Particles are measured in the angular range from 5° to 58° and identified up to momenta of 5, 3.5, and 8 GeV/c for pions, kaons, and protons, respectively. Mechanisms for particle production are discussed in comparison with heavy-ion-induced reactions at the same incident energy per nucleon.

105 data tables

No description provided.

No description provided.

No description provided.

More…

Cross-sections of large-angle hadron production in proton-- and pion--nucleus interactions VIII: aluminium nuclei and beam momenta from {\pm}3 GeV/c to {\pm}15 GeV/c

Bolshakova, A. ; Boyko, I. ; Chelkov, G. ; et al.
Eur.Phys.J.C 72 (2012) 1882, 2012.
Inspire Record 943727 DOI 10.17182/hepdata.60582

We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.

365 data tables

Ratio of deuterons to protons for polar angle 20-30 deg.

Ratio of deuterons to protons for polar angle 30-45 deg.

Ratio of deuterons to protons for polar angle 45-65 deg.

More…

Large-angle production of charged pions with 3-12.9 GeV/c incident protons on nuclear targets

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Phys.Rev.C 77 (2008) 055207, 2008.
Inspire Record 786183 DOI 10.17182/hepdata.13425

Measurements of the double-differential charged pion production cross-section in the range of momentum 100 MeV/c < p < 800 MeV/c and angle 0.35 < \theta < 2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum and proton-lead collisions are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length.

37 data tables

Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.75 to 0.95 radians.

More…

Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Eur.Phys.J.C 54 (2008) 37-60, 2008.
Inspire Record 761543 DOI 10.17182/hepdata.51357

Measurements of the double-differential $\pi^{\pm}$ production cross-section in the range of momentum $100 \MeVc \leq p < 800 \MeVc$ and angle $0.35 \rad \leq \theta < 2.15 \rad$ in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc and 12.9 \GeVc (Al only)) and compared to previously available data.

54 data tables

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.75 to 0.95 radians.

More…

Measurement of the production cross-section of positive pions in p Al collisions at 12.9-GeV/c.

The HARP collaboration Catanesi, M.G. ; Muciaccia, M.T. ; Radicioni, E. ; et al.
Nucl.Phys.B 732 (2006) 1-45, 2006.
Inspire Record 695147 DOI 10.17182/hepdata.41874

A precision measurement of the double-differential production cross-section, ${{d^2 \sigma^{\pi^+}}}/{{d p d\Omega}}$, for pions of positive charge, performed in the HARP experiment is presented. The incident particles are protons of 12.9 GeV/c momentum impinging on an aluminium target of 5% nuclear interaction length. The measurement of this cross-section has a direct application to the calculation of the neutrino flux of the K2K experiment. After cuts, 210000 secondary tracks reconstructed in the forward spectrometer were used in this analysis. The results are given for secondaries within a momentum range from 0.75 GeV/c to 6.5 GeV/c, and within an angular range from 30 mrad to 210 mrad. The absolute normalization was performed using prescaled beam triggers counting protons on target. The overall scale of the cross-section is known to better than 6%, while the average point-to-point error is 8.2%.

6 data tables

Double differential PI+ production cross section in the angular range 30 to 60 mrad.. Errors shown are point-to-point only.

Double differential PI+ production cross section in the angular range 60 to 90 mrad.. Errors shown are point-to-point only.

Double differential PI+ production cross section in the angular range 90 to 120 mrad.. Errors shown are point-to-point only.

More…

PARTICLE PRODUCTION IN THE TARGET RAPIDITY REGION FROM HADRON NUCLEUS REACTIONS AT SEVERAL GEV

Shibata, T.A. ; Nakai, K. ; Enyo, H. ; et al.
Nucl.Phys.A 408 (1983) 525-558, 1983.
Inspire Record 197272 DOI 10.17182/hepdata.8739

Highly inelastic processes in hadron-nucleus reactions at several GeV have been studied by measuring multi-particle emission in the target-rapidity region. Events with no leading particle(s) but with high multiplicities were observed up to 4 GeV. Proton spectra from such events were well reproduced with a single-moving-source model, which implied possible formation of a local source. The number of nucleons involved in the source was estimated to be (3–5)A 1 3 from the source velocity and the multiplicity of emitted protons. In those processes the incident energy flux seemed to be deposited totally or mostly (>62;75%) in the target nucleus to form the local source. The cross sections for the process were about 30% of the geometrical cross sections, with little dependence on incident energies up to 4 GeV and no dependence on projectiles (pions or protons). The E 0 parameter in the invariant-cross-section formula E d 3 σ /d p 3 = A exp (− E / E 0 ) for protons from the source increases with incident energy from 1 to 4 GeV/ c , but seems to saturate above 10 GeV at a value E 0 = 60–70 MeV. Three components in the emitted nucleon spectra were observed which would correspond to three stages of the reaction process: primary, pre-equilibrium and equilibrium.

72 data tables

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

More…