Proton - Deuteron Elastic Scattering at Small Momentum Transfer from 50-GeV/c to 400-GeV/c

Akimov, Y. ; Golovanov, L. ; Mukhin, S. ; et al.
Phys.Rev.D 12 (1975) 3399, 1975.
Inspire Record 99829 DOI 10.17182/hepdata.24883

Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.

11 data tables
More…

Cross section and complete set of proton spin observables in p polarized d elastic scattering at 250 MeV

Hatanaka, K. ; Shimizu, Y. ; Hirooka, D. ; et al.
Phys.Rev.C 66 (2002) 044002, 2002.
Inspire Record 599502 DOI 10.17182/hepdata.25292

The angular distributions of the cross section, the proton analyzing power, and all proton polarization transfer coefficients of p→d elastic scattering were measured at 250 MeV. The range of center-of-mass angles was 10°–165° for the cross section and the analyzing power, and about 10°–95° for the polarization transfer coefficients. These are the first measurements of a complete set of proton polarization observables for p→d elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely, the Tucson-Melbourne (TM) 2π-exchange model, a modification thereof (TM′) closer to chiral symmetry, and the Urbana IX model. Large effects of the three-nucleon forces are predicted. The inclusion of the three-nucleon forces gives a good description of the cross section at angles below the minimum. However, appreciable discrepancies between the data and predictions remain at backward angles. For the spin observables the predictions of the TM 3NF model deviate strongly from the other two 3NF models, which are close together, except for Kyy′. In the case of the analyzing power all 3NF models fail to describe the data at the upper half of the angular range. In the restricted measured angular range the polarization transfer coefficients are fairly well described by the TM′ and Urbana IX 3NF models, whereas the TM 3NF model mostly fails. The transfer coefficient Kyy′ is best described by the Urbana IX but the theoretical description is still insufficient to reproduce the experimental data. These results call for a better understanding of the spin structure of the three-nucleon force and very likely for a full relativistic treatment of the three-nucleon continuum.

2 data tables

Cross section and analyzing power measurements.

Proton polarization transfer coefficients.


MEASUREMENT OF ANALYZING POWER IN FORWARD ANGLE FOR ELASTIC p d SCATTERING AT 3.5-GeV

Ohmori, C. ; Horikawa, N. ; Ishida, Y. ; et al.
Phys.Lett.B 230 (1989) 27-30, 1989.
Inspire Record 277083 DOI 10.17182/hepdata.29770

The analyzing power for elastic pd scattering at 3.5 GeV has been measured in the region 0.1⩽−t⩽1.5 (GeV/ c ) 2 , using the polarized proton beam at KEK. The angular distribution shows a behavior similar to that in the lower energy region. It is reproduced fairly well by the predictions of a multiple scattering model based on the Glauber theory.

1 data table

No description provided.


Asymmetry in the scattering of protons on polarized deuterons at 1.21 gev/c

Albrow, M.G. ; Borghini, M. ; Bosnjakovic, B. ; et al.
Phys.Lett.B 35 (1971) 247-251, 1971.
Inspire Record 69249 DOI 10.17182/hepdata.28476

By using a polarized deuteron target we have measured the asymmetry in the differential cross section for elastic scattering of protons on deuterons and for quasi-elastic scattering of protons on protons bound in deuterons between the two states of opposite polarization, normal to the scattering plane of the initial deuteron. The beam momentum was 1.21 GeV/ c . It is checked that the neutrons bound in the deuterons are polarized to approximately 20%.

2 data tables

NOT ALL DATA POINTS COMPILED.

Axis error includes +- 10/10 contribution (DS/DT DATA NORMALIZED TO THAT OF VINCENT 70).